kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
AI Strategier för kvalitetssystem: En guide till AI-lösningar
KTH, School of Industrial Engineering and Management (ITM), Production engineering.
KTH, School of Industrial Engineering and Management (ITM), Production engineering.
2024 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
AI Strategies for Quality Systems : A Guide to AI solutions (English)
Abstract [sv]

Denna studie utforskar möjligheterna att integrera Artificiell Intelligens (AI) i AstraZenecas Sweden Operations kvalitetssystem för att effektivisera processer och beslutsfattande. Genom en litteraturgenomgång analyseras hur AI kan automatisera uppgifter, förutsäga avvikelser och optimera kvalitetsledningssystem. Specifika områden inom AstraZenecas kvalitetssystem identifieras som potentiella mottagare av AI-implementering.

Studien lyfter fram fördelarna men pekar också på utmaningar som datatillförlitlighet, säkerhet och etiska överväganden. Föreslagna strategier för att övervinna dessa utmaningar inkluderar investeringar i robusta säkerhetsåtgärder, etablering av tydliga etiska riktlinjer och löpande användarutbildning.

Studien har också använt intervjuer och observationer med processägare inom AstraZenecas kvalitetssystem för att säkerställa ett omfattande resultat. Genom att samla in insikter och perspektiv från dem som är direkt involverade i kvalitetsprocesser, ger studien en djupare förståelse för både utmaningar och möjligheter med AI-integrationen. Denna metod stärker studiens trovärdighet och användbarhet av slutsatser och rekommendationer.

Sammanfattningsvis lovar en framgångsrik AI-implementering att förbättra effektiviteten i AstraZenecas kvalitetssystem i Sverige. Ansvarsfull integrering av AI-teknologier har potential att höja kvalitetsstandarder, förbättra beslutsfattande processer och främja innovation, vilket positionerar AstraZeneca som en föregångare inom farmaceutisk excellens och framsteg.

Abstract [en]

This project investigates the potential integration of Artificial Intelligence (AI) into AstraZeneca's Sweden Operation quality system to streamline processes and decision-making. Drawing from a review of relevant literature, the analysis examines how AI can automate tasks, predict deviations, and optimize quality management processes. Specific areas within AstraZeneca's quality system are identified as potential beneficiaries of AI implementation.

While acknowledging the benefits, the study also highlights challenges such as data integrity, security, and ethical considerations. Proposed strategies for overcoming these challenges include investment in robust security measures, establishment of clear ethical guidelines, and ongoing user education.

Additionally, this study has utilized interviews and observations with process owners within the quality system at AstraZeneca to ensure a comprehensive result. By gathering insights and perspectives from those directly involved in quality processes, the study provides a deeper understanding of both challenges and opportunities associated with the integration of AI. This approach strengthens the credibility and usability of the study's conclusions and recommendations.

In conclusion, successful AI implementation holds the promise of enhancing AstraZeneca's Sweden Operation quality system’s efficiency. Responsible integration of AI technologies has the potential to elevate quality standards, improve decision-making processes, and foster innovation, positioning AstraZeneca as a frontrunner in pharmaceutical excellence and advancement.

Place, publisher, year, edition, pages
2024. , p. 52
Series
TRITA-ITM-EX ; 2024:418
Keywords [en]
Artificial intelligence (AI), Efficiency, Process improvement, Quality system improvement
Keywords [sv]
Artificiell intelligens (AI), Effektivitet, Processförbättringar, Förbättring av kvalitetssystemet
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-349528OAI: oai:DiVA.org:kth-349528DiVA, id: diva2:1880569
External cooperation
AstraZeneca AB
Supervisors
Examiners
Available from: 2024-07-01 Created: 2024-07-01

Open Access in DiVA

fulltext(1469 kB)195 downloads
File information
File name FULLTEXT01.pdfFile size 1469 kBChecksum SHA-512
f6b508528a2537e2060b9a69298477fcaccfc0c967087e7368cd717dc87057b87335ad487cac7988a43fee5bc9b743bbc86944579c3b9d67ddddcc72ccae0503
Type fulltextMimetype application/pdf

By organisation
Production engineering
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 195 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 661 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf