We compute the indicial roots of the Lichnerowicz Laplacian on Ricci-flat cones and give a detailed description of the corresponding radially homogeneous tensor fields in its kernel. For a Ricci-flat conifold (M, g) which may have asymptotically conical as well as conically singular ends, we compute at each end a lower bound for the order with which the metric converges to the tangent cone. As a special subcase of our result, we show that any Ricci-flat ALE manifold (Mn,g) is of order n and thereby close a small gap in a paper by Cheeger and Tia.
QC 20240807