kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Advance Silicon Micromachined Passive Components for High-performance Millimetre and Sub-millimetre wave Systems
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems. (THz Group)ORCID iD: 0000-0002-9092-3962
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis investigates advanced silicon micromachined passive component design solutions for high-performance millimetre and sub-millimetre-wave systems, representing the state-of-the-art in modern microwave and RF systems. The proposed designs are fabricated through deep reactive ion etching (DRIE). Silicon micromachining using DRIE offers the ability to fabricate small feature sizes, making it ideal for millimetre and submillimeter-wave systems applications, with low surface roughness and manufacturing tolerances in a scalable process. The proposed design solutions utilize waveguide-based technologies with the goal of advancing future generations of satellite communications, radar, remote sensing, and biomedical instrumentation. 

The core of this work is to propose design solutions to overcome manufacturing limitations, reduce transmission losses, introduce new design methods to enhance component performance, and simplify overall design complexity. 

The first part of the thesis introduces new platforms for transferring electromagnetic waves within silicon micromachined chips. Two structures are presented: a silicon-micromachined E-plane waveguide bend for flange-to-chip connection and a broadband on-chip rectangular waveguide 90º twist both for 220-325 GHz. The E-plane bend is crucial for transferring waves from outside the chip to the inside and eliminating reliance on external fixtures. The on-chip silicon micromachined twist enables interconnection of H-plane and E-plane waveguide subsystems, that increases fabrication flexibility. 

The second part discusses several novel filter design solutions operating at different frequency ranges from 90 to 300 GHz, each exhibiting state-of-the-art performance. An ultra-narrowband 4thorder filter with a wide spurious-free rejection band is developed for183 GHz. This filter utilizes high-Q-factor TM330 mode resonators and exhibits a measured Q-factor of 1000, surpassing any previously reported values in this frequency range. Additionally, a new negative coupling structure suitable for rectangular waveguide filters is proposed, offering compatibility with various fabrication methods, such as CNC milling and silicon micromachining. Using this negative coupling, a 4th-order quasi-elliptic bandpass filter with a centre frequency of 270 GHz and a fractional bandwidth of 2.2%is developed. Furthermore, a frequency variant coupling structure designed for rectangular cavities is proposed, enabling in-line filters with N+1 transmission zeroes, which can be easily manufactured and integrated with other subsystems. Using the proposed coupling structure, two filters are developed at 270 GHz: one 4th-order with 3transmission zeroes (TZs) and one 2nd-order with 3 TZs. Moreover, an integrated eighth-degree lowpass waveguide filter having a cut-off frequency of 280 GHz is presented. The lowpass filter is also fabricated using DRIE, with the aid of the twist proposed in section one. Furthermore, a compact band-pass filter with triplet response using one triangular singlet and two iris resonators is developed. Finally, a filtenna is introduced, combining a 4th-order filter with two slot antennas. The utilized filter employs 4 rectangular singlets introducing 4 transmission zeroes. The measured gain of the structure is 7 dBi, considering the use of on-chip E-plane bend transition to enable a direct connection to the flange.

Abstract [sv]

Denna avhandling undersöker avancerade designlösningar för passiva komponenter tillverkade av mikromaskinerat kisel för högpresterande millimeter och sub-millimeter vågsystem, vilket representerar den senaste teknologin inom moderna mikrovågs och RF system. De föreslagna konstruktionerna tillverkas genom djup reaktiv jonetsning (DRIE). Kisermikromaskinering med DRIE erbjuder möjligheten att tillverka små detaljstorlekar, vilket gör den idealisk för tillämpningar inom millimeter och sub-millimeter vågsystem, med låg ytjämnhet och tillverkningstoleranser i en skalbar process. De föreslagna designlösningarna använder vågledarbaserade teknologier med målet att främja framtida generationer av satellitkommunikation, radar, fjärranalys och biomedicinsk instrumentering.

Kärnan i detta arbete är att föreslå designlösningar för att övervinna tillverkningsbegränsningar, minska transmissionsförluster, introducera nya designmetoder för att förbättra komponentprestanda och förenkla den övergripande designkomplexiteten.

Den första delen av avhandlingen introducerar nya plattformar för att överföra elektromagnetiska vågor inom kisermikromaskinerade chip. Två strukturer presenteras: en kisermikromaskinerad Eplan vågledarböjning för fläns-till-chip-anslutning och en bredbandig på-chip rektangulär vågledare 90º vridning, båda för 220-325 GHz. E-planböjningen är avgörande för att överföra vågor från utsidan av chipet till insidan och eliminera beroendet av externa fästanordningar. Den på-chip kisermikromaskinerade vridningen möjliggör sammankoppling av H-plan och E-plan vågledarsystem, vilket ökar tillverkningsflexibiliteten. 

Den andra delen diskuterar flera nya filterdesignlösningar som arbetar vid olika frekvensområden från 90 till 300 GHz, var och en med toppmoderna prestanda. Ett ultrasmalt 4:e ordningens filter med ett brett störningsfritt avvisningsband utvecklas för 183 GHz. Detta filter använder hög-Q-faktor TM330-lägesresonatorer och uppvisar en uppmätt Q-faktor på 1000, vilket överträffar alla tidigare rapporterade värden inom detta frekvensområde. Dessutom föreslås en ny negativ kopplingsstruktur lämplig för rektangulära vågledarfilter, som erbjuder kompatibilitet med olika tillverkningsmetoder, såsom CNC-fräsning och kisermikromaskinering. Med denna negative koppling utvecklas ett 4:e ordningens kvasi-elliptiskt bandpassfilter med en mittfrekvens på 270 GHz och en fraktionell bandbredd på 2,2%. Vidare förklaras en dispersiv kopplingsstruktur designad för rektangulära kaviteter, som möjliggör in-line filter med N+1 överföringsnollor, vilka enkelt kan tillverkas och integreras med andra delsystem. Med den föreslagna kopplingsstrukturen utvecklas två filter vid 270 GHz: ett 4:e ordningens med 3 överföringsnollor och ett 2:a ordningens med 3 TZ. Dessutom presenteras ett integrerat åttonde gradens lågpassvågledarfilter med en avskärningsfrekvens på 280 GHz. Lågpassfiltret tillverkas också med DRIE, med hjälp av den föreslagna vridningen i avsnitt ett. Slutligen introduceras en filtreringsantenn, som kombinerar ett 4:e ordningens filter med två slitsantenner. Det använda filtret utnyttjar 4 rektangulära singletter som introducerar 4 överföringsnollor. Den uppmätta förstärkningen av strukturen är 7 dBi, med tanke på användningen av på-chip E-plan böjövergång för att möjliggöra en direkt anslutning till flänsen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. xv, 67
Series
TRITA-EECS-AVL ; 2024:57
Keywords [en]
Terahertz frequency, microwave filters, filtenna, filtering antenna, silicon micromachining, waveguide filter, RF circuit, millimeter and sub-millimeter wave
Keywords [sv]
Terahertz-frekvens, mikrovågsfilter, filtenn, filtreringsantenn, kiselmikrobearbetning, vågledarfilter, RF-krets, millimeter- och submillimetervåg
National Category
Communication Systems Telecommunications
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-351854ISBN: 978-91-8040-973-5 (print)OAI: oai:DiVA.org:kth-351854DiVA, id: diva2:1890041
Public defence
2024-09-20, F3, Lindstedtsvägen 26, stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20240819

Available from: 2024-08-19 Created: 2024-08-19 Last updated: 2024-08-20Bibliographically approved
List of papers
1. Full-Band Silicon-Micromachined E-Plane Waveguide Bend for Flange-to-Chip Connection
Open this publication in new window or tab >>Full-Band Silicon-Micromachined E-Plane Waveguide Bend for Flange-to-Chip Connection
Show others...
2024 (English)In: IEEE Transactions on Terahertz Science and Technology, ISSN 2156-342X, E-ISSN 2156-3446, Vol. 14, no 1, p. 130-133Article in journal, Letter (Refereed) Published
Abstract [en]

This article presents a novel design of a full-band E -plane waveguide bend for direct flange-to-chip connection. The proposed E -plane bend concept is validated with a reduced-height bend prototype designed for standard WR-3.4 waveguide flange-to-chip connection, fabricated by silicon micromachining, and characterized by de-embedding the S -parameters with a custom-made offset-short calibration kit. The measured insertion and return losses are 0.08–0.3 dB and better than 14.7 dB, respectively, for the whole waveguide band of 220–320 GHz, and better than 0.15 and 20 dB, respectively, for more than 80% of the waveguide band. The measured results are in excellent agreement with the simulation data. Besides, a two-port waveguide structure with WR-3.4 interfaces is fabricated and measured to confirm the functionality of the designed E -plane bend. Furthermore, sensitivity analysis shows the robustness of the proposed geometry against fabrication tolerances.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-344395 (URN)10.1109/tthz.2023.3327587 (DOI)001138721800012 ()2-s2.0-85176302865 (Scopus ID)
Note

QC 20240318

Available from: 2024-03-14 Created: 2024-03-14 Last updated: 2024-08-19Bibliographically approved
2. On-Chip Integration of Orthogonal Subsystems Enabled by Broadband Twist at 220–325 GHz
Open this publication in new window or tab >>On-Chip Integration of Orthogonal Subsystems Enabled by Broadband Twist at 220–325 GHz
2023 (English)In: IEEE transactions on microwave theory and techniques, ISSN 0018-9480, E-ISSN 1557-9670, p. 1-0Article in journal (Refereed) Published
Abstract [en]

In this article, we report for the first time on a low-loss compact platform that enables the integration of H-and E-plane rectangular waveguide subsystems enabled by 90 ∘ polarization rotation of rectangular waveguide sections on a silicon-micromachined chip. The proposed platform offers unprecedented design flexibility for a 2.5D fabrication technology such as silicon micromachining, since orthogonal waveguide device sections with full design freedom in H-plane geometries can be cofabricated with sections with full design freedom in E-plane geometries, enabled by novel, integrated waveguide twists optimized for 2.5D fabrication. The platform is developed for use in broadband millimeter-and submillimeter-wave waveguide circuits and prototypes are implemented in the 220–325-GHz band. A prototype chip demonstrating the platform, implemented by bonding three stacked silicon chips, is fabricated. The measured results of the twist prototype exhibit a very low insertion loss of less than 0.2 dB and a return loss of 20 dB or better in most of the 220–325-GHz band. An integrated eighth-degree lowpass waveguide filter with axial ports having a cut-off frequency of 280 GHz is codesigned with the twist transition and fabricated on the platform to demonstrate its application. The filter shows 0.4-dB measured insertion loss and has a measured return loss in the passband of better than 14 dB.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
Waveguide transitions, Silicon, Optical device fabrication, Rectangular waveguides, Loss measurement, Band-pass filters, Waveguide components
National Category
Communication Systems
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-326342 (URN)10.1109/tmtt.2023.3253963 (DOI)000953692200001 ()2-s2.0-85151505675 (Scopus ID)
Note

QC 20230503

Available from: 2023-04-28 Created: 2023-05-03 Last updated: 2024-08-19Bibliographically approved
3. Ultra-Narrowband Silicon-Micromachined Sub-THz Filter With Wide Spurious-Free Rejection Band Employing High-Q TM330 Resonators
Open this publication in new window or tab >>Ultra-Narrowband Silicon-Micromachined Sub-THz Filter With Wide Spurious-Free Rejection Band Employing High-Q TM330 Resonators
2024 (English)In: IEEE transactions on microwave theory and techniques, ISSN 0018-9480, E-ISSN 1557-9670, Vol. 72, no 6, p. 3554-3563Article in journal (Refereed) Published
Abstract [en]

In this article, we present an ultra-narrowband silicon-micromachined bandpass filter with a wide and high-rejection stopband. The proposed filter uses high- Q factor TM330 mode resonators. To avoid near-passband spurious resonances typically associated with higher order modes, a novel method of arranging the positions of the coupling slots is carried out. A fourth-order filter with a center frequency of 183 GHz and a fractional bandwidth (FBW) of 0.5% has been fabricated by silicon micromachining for the first time. The prototype employs out-of-plane transitions on the input and output ports, which results in axial ports enabling a direct characterization with the device simply mounted between the two standard waveguide test ports. The unloaded Q factor extracted from the measurements is 1000, which is unparalleled by any previously reported narrowband filter in any technology in this frequency range. A spurious free response with a high stopband rejection in the entire waveguide band is obtained. The measured worst-case insertion loss and return loss (RL) in the passband are 4.5 and 9 dB, respectively.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-348850 (URN)10.1109/tmtt.2023.3326287 (DOI)001106708300001 ()2-s2.0-85181560981 (Scopus ID)
Funder
Swedish Research CouncilSwedish Foundation for Strategic Research, CHI19-0027
Note

QC 20240628

Available from: 2024-06-27 Created: 2024-06-27 Last updated: 2024-08-19Bibliographically approved
4. Inline Waveguide Filters with Transmission Zeros using Frequency Variant Couplings
Open this publication in new window or tab >>Inline Waveguide Filters with Transmission Zeros using Frequency Variant Couplings
(English)Manuscript (preprint) (Other academic)
Abstract [en]

In this paper, we present a frequency-variant coupling structure suitable for waveguide filters. Although this structure is proposed for rectangular cavities, the same principle can be applied to other types of cavities. The proposed structure is compatible with standard micromachining technologies. Using this coupling structure, two inline waveguide filters with N-1 and N+1 transmission zeros are developed. A 4th-order bandpass filter with 3 transmission zeros at 245, 285, and 288 GHz is designed, operating at a center frequency of 270 GHz with a 2\% fractional bandwidth. Additionally, a 2nd-order bandpass filter with a center frequency of 280 GHz and a 0.71\% fractional bandwidth, presenting 3 transmission zeros at 230, 300, and 308 GHz, is also developed. Both filters are fabricated using silicon micromachining. The measured insertion loss and return loss in the passband are 2 dB and better than 18 dB, respectively, for the 4th-order filter, and 1.5 dB and better than 19 dB for the 2nd-order filter.

National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-348853 (URN)
Note

QC 20240628

Available from: 2024-06-27 Created: 2024-06-27 Last updated: 2024-08-19Bibliographically approved
5. Compact Triangular-Cavity Singlet-Based Filters in Stackable Multi-Layer Technologies
Open this publication in new window or tab >>Compact Triangular-Cavity Singlet-Based Filters in Stackable Multi-Layer Technologies
Show others...
2022 (English)In: IEEE Transactions on Terahertz Science and Technology, ISSN 2156-342X, E-ISSN 2156-3446, Vol. 12, no 5, p. 540-543Article in journal (Refereed) Published
Abstract [en]

In this letter, triangular-cavity bandpass filters are investigated in stackable multilayer technologies in order to achieve highly compact designs with reduced fabrication complexity. The triangular-shaped cavities are first introduced in the form of singlets and then expanded on as a novel method for achieving a quasi-triplet filter response, where the filter's input and output irises are utilized as resonating means for two additional passband poles. Exploitation of this advanced singlet scheme exemplifies innovative use of resonant irises for achieving highly compact filters that can be manufactured with simple multilayer fabrication steps for use in future terahertz applications.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
Keywords
Band-pass filters, Filtering theory, Magnetic separation, Loss measurement, Couplings, Waveguide discontinuities, Topology, Deep reactive ion etching (DRIE), electrical-discharge machining (EDM), resonant iris, singlet, triangular cavity, wire erosion
National Category
Other Physics Topics
Identifiers
urn:nbn:se:kth:diva-318161 (URN)10.1109/TTHZ.2022.3191237 (DOI)000849261000017 ()2-s2.0-85135240663 (Scopus ID)
Note

QC 20221214

Available from: 2022-09-16 Created: 2022-09-16 Last updated: 2024-08-19Bibliographically approved
6. A Silicon Micromachined Cascaded Singlet Filtering Antenna at 270 GHz
Open this publication in new window or tab >>A Silicon Micromachined Cascaded Singlet Filtering Antenna at 270 GHz
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This paper discusses the steps and challenges of implementing a cascaded singlet filtenna using silicon deep reactive ion etching (DRIE) technology. Two fourth-order filtennas with a center frequency of 270~GHz, 14~GHz bandwidth, and a 20~dB inband return loss are fabricated and measured to verify the proposed concept. The measured single-slot and dual-slot filtenna have a peak radiation gain of X~dBi, and Y~dBi at 270~GHz, respectively. Moreover, the challenges and details of silicon micromachining in fabricating these antennas are discussed.Comprehensive details regarding the synthesis procedure, confirmation via simulation, and measurement outcomes are thoroughly explained.

National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-348974 (URN)
Note

QC 20240628

Available from: 2024-06-27 Created: 2024-06-27 Last updated: 2024-08-19Bibliographically approved
7. Novel Negative Coupling Structure for Rectangular Waveguide Cavity Filters
Open this publication in new window or tab >>Novel Negative Coupling Structure for Rectangular Waveguide Cavity Filters
2024 (English)In: Proceedings IEEE International Microwave Filter Workshop IMFW 2024, Institute of Electrical and Electronics Engineers (IEEE), 2024Conference paper, Published paper (Refereed)
Abstract [en]

In this paper, we introduce a novel negative coupling structure that is suitable for fabrication using milling and micromachining technologies. The proposed negative coupling structure is designed in three sections: a central bow-shaped iris is sandwiched between two sections that manipulate electromagnetic fields, causing a 180-degree phase rotation. To validate this concept, we have developed a silicon micromachined fourth-degree quasi-elliptic bandpass filter with a center frequency of 270 GHz and a fractional bandwidth of 2.2\%. The measured results of the filter display two transmission zeros in the stopband thus demonstrating the correct performance of the negative coupling structure.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
Keywords
Bandpass filters; Bandwidth; Micromachining; Silicon; Terahertz waves; Waveguide filters
National Category
Telecommunications Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-343973 (URN)10.1109/IMFW59690.2024.10477154 (DOI)001196000800010 ()2-s2.0-85190542680 (Scopus ID)
Conference
IEEE International Microwave Filter Workshop IMFW 2024, 21-23 Feb 2024 Cocoa Beach, FL, USA
Note

Part of proceedings ISBN: 979-835034532-2

QC 20240430

Available from: 2024-02-27 Created: 2024-02-27 Last updated: 2024-08-19Bibliographically approved

Open Access in DiVA

PhD_Thesis_Mohammad_Mehrabi(27764 kB)179 downloads
File information
File name FULLTEXT01.pdfFile size 27764 kBChecksum SHA-512
7d9ce94a8ea99d3acd0653b6804be57612b4b310a294e2b3811f584068a07d8a9dfce5549d1b51eba2198d3d9824b150b6758c33cb8a34cb956a84d62ead4487
Type summaryMimetype application/pdf

Authority records

Mehrabi Gohari, Mohammad

Search in DiVA

By author/editor
Mehrabi Gohari, Mohammad
By organisation
Micro and Nanosystems
Communication SystemsTelecommunications

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 951 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf