Effects of Rayleigh and Weber numbers on two-layer turbulent Rayleigh-Benard convectionShow others and affiliations
2024 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 996, article id A23Article in journal (Refereed) Published
Abstract [en]
This study presents direct numerical simulation results of two-layer Rayleigh-Benard convection, investigating the previously unexplored Rayleigh-Weber parameter space 10(6) <= Ra <= 10(8) and 10(2) <= We <= 10(3). Global properties, such as the Nusselt and Reynolds numbers, are compared against the extended Grossmann-Lohse theory for two fluid layers, confirming a weak Weber number dependence for all global quantities and considerably larger Reynolds numbers in the lighter fluid. Statistics of the flow reveal that the interface fluctuates more intensely for larger Weber and smaller Rayleigh numbers, something also reflected in the increased temperature root mean square values next to the interface. The dynamics of the deformed two-fluid interface is further investigated using spectral analysis. Temporal and spatial spectrum distributions reveal a capillary wave range at small Weber and large Rayleigh numbers, and a secondary energy peak at smaller Rayleigh numbers. Furthermore, the maxima of the space-time spectra lie in an intermediate dispersion regime, between the theoretical predictions for capillary and gravity-capillary waves, showing that the gravitational energy of the interfacial waves is strongly altered by temperature gradients.
Place, publisher, year, edition, pages
Cambridge University Press (CUP) , 2024. Vol. 996, article id A23
Keywords [en]
Benard convection, plumes/thermals, multiphase flow
National Category
Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-354809DOI: 10.1017/jfm.2024.805ISI: 001324207400001Scopus ID: 2-s2.0-85205789793OAI: oai:DiVA.org:kth-354809DiVA, id: diva2:1905416
Note
QC 20241014
2024-10-142024-10-142025-02-09Bibliographically approved