Open this publication in new window or tab >>2025 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]
Cities worldwide are progressively attracting more residents, making the transportation supply provision challenging and the overcrowding phenomenon a new norm. Crowding negatively affects passengers’ travel experience and the operations of the public transportation system. So far, little attention has been given to how specific passenger groups, including the new residents of a city, contribute to public transportation crowding. Empirical knowledge of passenger groups’ impact on the crowding conditions in the system can guide tailored policy initiatives such as new fare structures, dedicated public transportation services, or infrastructure investments. Automated data sources in the public transportation sector can play an important role in this direction by i) offering opportunities for passenger segmentation and ii) providing data with high spatiotemporal resolution.
Paper I proposes a method based on smart card data for quantifying crowding contributions from a selected passenger group on the rest of the passengers at the journey level. We propose two novel metrics: time-weighted contribution to load factor and maximum contribution to load factor. The method is applied to two passenger groups: school students and passengers traversing Stockholm’s inner city. Results indicate that school students utilize 15% of the seating capacity in the Stockholm County case study area. Moreover, passengers traversing the inner-city occupy more than 80% of the seating capacity on the most affected network segment. The commuter rail corridor and its surrounding areas are found to be primarily affected by both selected passenger groups. Results can guide policy-making towards more efficient demand management and lower overall crowding conditions on the public transportation system.
Paper II extends the method proposed in Paper I in the context of new urban developments. The method captures the difference in crowding contributions induced by a newly developed area at the segment level. The method is applied to various urban developments, considering the classification of their types. Characteristics of the selected urban development categories such as the type, size, location, proximity to high-capacity public transportation connections, and socioeconomic characteristics are also concerned. Results reveal that the size, type of urban development, and proximity to a high-capacity connection are highly influential factors in determining the value and shaping the geographical extent of the crowding implications, regardless of its category. In addition, income and car ownership levels in the newly developed areas have a two-fold effect on shaping network-wide crowding contributions in terms of value and geographical spread. Results from Paper II can be incorporated into assessment frameworks for public transportation investments related to new urban developments. Last, results may assist in placing future urban developments accounting for the resulting crowding effects, therefore assisting towards more efficient public transportation networks and cities.
Abstract [sv]
Städer över hela världen lockar till sig allt fler invånare, vilket gör transportförsörjningen utmanande och överbeläggningar till en ny norm. Trängsel har en negativ inverkan på passagerarnas reseupplevelse och på kollektivtrafiksystemets funktion. Hittills har liten uppmärksamhet ägnats åt hur specifika passagerargrupper, inklusive de nya invånarna i en stad, bidrar till trängsel i kollektivtrafiken. Empirisk kunskap om passagerargruppernas inverkan på trängseln i systemet kan vägleda skräddarsydda politiska initiativ som nya prisstrukturer, särskilda kollektivtrafiktjänster eller infrastrukturinvesteringar. Automatiserade datakällor inom kollektivtrafiksektorn kan spela en viktig roll i detta sammanhang genom att i) erbjuda möjligheter till passagerarsegmentering och ii) tillhandahålla data med hög spatiotemporal upplösning.
I Paper I föreslås en metod baserad på smartkortsdata för att kvantifiera trängselbidrag från en utvald passagerargrupp på resten av passagerarna på resenivå. Vi föreslår två nya mätvärden: tidsviktat bidrag till belastningsfaktorn och maximalt bidrag till belastningsfaktorn. Metoden tillämpas på två passagerargrupper: skolelever och passagerare som reser genom Stockholms innerstad. Resultaten visar att skolelever utnyttjar 15% av sittplatskapaciteten i fallstudieområdet i Stockholms län. Dessutom upptar passagerare som reser genom innerstaden mer än 80% av sittplatskapaciteten på det mest påverkade nätverkssegmentet. Pendeltågskorridoren och dess omgivande områden påverkas främst av båda de utvalda passagerargrupperna. Resultaten kan vägleda beslutsfattandet mot en mer effektiv efterfrågestyrning och lägre trängsel i kollektivtrafiksystemet.
I Paper II utvidgas den metod som föreslås i Paper I till att omfatta nya stadsutvecklingsområden. Metoden fångar upp skillnaden i trängselbidrag som orsakas av ett nyutvecklat område på segmentnivå. Metoden tillämpas på olika stadsutvecklingar, med hänsyn till klassificeringen av deras typer. De utvalda stadsutvecklingskategoriernas egenskaper, såsom typ, storlek, läge, närhet till kollektivtrafikförbindelser med hög kapacitet och socioekonomiska egenskaper, beaktas också. Resultaten visar att storleken, typen av stadsutveckling och närheten till en högkapacitetsförbindelse är mycket inflytelserika faktorer när det gäller att bestämma värdet och forma den geografiska omfattningen av trängselimplikationerna, oavsett kategori. Dessutom har inkomst- och bilinnehavsnivåer i de nyutvecklade områdena en dubbel effekt på utformningen av nätverksomfattande trängselbidrag i termer av värde och geografisk spridning. Resultaten från Paper II kan införlivas i bedömningsramar för kollektivtrafikinvesteringar i samband med ny stadsutveckling. Slutligen kan resultaten hjälpa till att placera framtida stadsutveckling med hänsyn till de resulterande trängseleffekterna och därmed bidra till effektivare kollektivtrafiknät och städer.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 27
Series
TRITA-ABE-DLT ; 252
Keywords
Public transportation, urban development, crowding, smart card data
National Category
Transport Systems and Logistics
Research subject
Transport Science, Transport Systems
Identifiers
urn:nbn:se:kth:diva-361245 (URN)978-91-8106-204-5 (ISBN)
Presentation
2025-04-07, U21, Brinellvägen 28A, KTH Campus, Public video conference link https://kth-se.zoom.us/j/68852520133, Stockholm, 14:00 (English)
Opponent
Supervisors
Projects
CAPA-CITY: Identifying capacity gaps to support urban and regional development
Funder
Region Stockholm, RS 2022-0210
Note
QC 20250318
2025-03-182025-03-132025-04-01Bibliographically approved