kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A combined modelling and experimental investigation of erosion-corrosion of chromia- and alumina-forming steels in liquid lead
(Surface and corrosion science, Royal Institute of Technology (KTH))
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Engineering.ORCID iD: 0000-0002-7577-8736
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Science and Engineering.ORCID iD: 0000-0001-6047-9496
2025 (English)Manuscript (preprint) (Other academic)
Abstract [en]

Erosion-corrosion experiments were carried out a chromia-forming steel (316L) alumina-forming ferritic, austenitic and martensitic steels and coated 316L at 480-520 °C in liquid lead. Testing was done under low oxygen conditions (10-7-10-8 wt.% O) for times up to 1392 hours using a purpose-built Erosion Corrosion rig (ECO). It was found that uncoated 316L suffered from Ni dissolution to a depth of 140 µm and severe erosion-corrosion attack. After coating with alumina oxide via Detonation Gun (DG) and Pack Cementation (PC) methods, the 316L remained unaffected. The commercial alumina forming alloys containing multiple reactive elements, Kanthal EF 100, Alkrothal 14 and Kanthal APMT, performed well and were minimally affected by erosion-corrosion. However, Kanthal AF, which contains only the single reactive element Y, lost a similar amount of mass as the 316L sample. The experimental alumina forming austenitic alloy denoted AFA 3 showed very poor resistance to erosion-corrosion, suffering from severe mass loss and with signs of Ni dissolution to a depth of 25 µm. The experimental alumina-forming martensitic steel, AFM, on the other hand, remained unaffected by erosion-corrosion. Hydrodynamic simulations were carried out using ANSYS FLUENT to determine the relative velocity between the HLM and the samples, calculating the highest velocity to be 9.9 m/s. It also demonstrated a good qualitative alignment between the experimental result and the simulations. This indicates that the erosion damage originated from a combination of the turbulence created inside the ECO-rig and particle erosion.

Place, publisher, year, edition, pages
2025.
National Category
Materials Engineering
Research subject
Physics, Nuclear Engineering
Identifiers
URN: urn:nbn:se:kth:diva-356548OAI: oai:DiVA.org:kth-356548DiVA, id: diva2:1913961
Funder
Swedish Foundation for Strategic Research, ARC19-0043
Note

Manuscript under review in Nuclear Materials and Energy

QC 20241118

Available from: 2024-11-18 Created: 2024-11-18 Last updated: 2024-11-18Bibliographically approved
In thesis
1. Alumina-forming stainless steels in liquid lead and lead-bismuth eutectic
Open this publication in new window or tab >>Alumina-forming stainless steels in liquid lead and lead-bismuth eutectic
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This work focuses on mechanical properties, susceptibility to liquid metal embrittlement (LME), and erosion-corrosion of alumina-forming steels using a Slow Strain rate testing rig (SSRT) and an Erosion Corrosion-rig (ECO) developed at KTH. The environments investigatedare liquid lead and lead-bismuth eutectic (LBE) intended for use in high-temperature energy applications such as generation IV nuclear power or fast nuclear reactors. The lead and LBEare intended to serve as a heat-transfer medium in the reactor. These higher temperature sand harsher environments put new demands on the construction materials used. The work has been mainly focused on mechanical testing using slow strain rate testing (SSRT) to evaluate susceptibility to LME. However, since other properties, such as oxidation, are intimately intertwined with the LME phenomenon, liquid metal corrosion and erosion are also part of this work. The tested materials include a ferritic FeCrAl steel designated EF100, three alumina-forming austenitic (AFA) steels and an alumina-forming martensitic (AFM) steel. The temperature range of the tests in liquid Pb was 340-600 °C and in LBE 140-600 °C with varying oxygen activities. Microstructure analyses were performed to underst and theunderlying mechanisms responsible for LME. The ferritic EF100 showed excellent performance in liquid Pb, exhibiting no signs of being affected by LME. However, in liquid LBE, it was severely affected by LME. The effects of Bi were investigated by stepwise additions of Bi to pure Pb, and signs of LME were observed already at 3-5 wt.% Bi. The AFM alloy suffered from severe LME in both liquid Pb and LBE, starting at the melting point of the liquid metal. The AFA alloys showed no signs of LME in either liquid Pb or LBE in the temperature range of 350-550 °C and 140-550 °C, respectively. However, above 570 °C, signs of LME were observed in all three alloys. Erosion-corrosion was found to have the largest impact on steels containing Ni (e.g., 316L and AFA 3), while the steels with a higher hardness and that were able to form a protective oxide scale remained largely unaffected (Kanthal AF, APMT, EF100, Alkrothal 14, coated 316L PC/DG, and AFM).

Abstract [sv]

Denna avhandling fokuserar på aluminiumoxidbildande ståls mekaniska egenskaper och deras påverkan av flytande metallförsprödning (LME) i smält bly och bly-vismut eutectiska (LBE) miljöer. Dessa smälta metaller är tänkta att kunnas användning som värmetransportertmedium inom högtemperatur- energiapplikationer så som generation IV kärnkraftsreaktorer. Dessa höga temperaturer och miljöer ställer nya krav på dekonstruktionsmaterial som ska användas. Avhandlingsarbetet har framför allt gått ut på att utvärdera de olika ståltypernas mekaniska egenskaper genom ”Slow strain rate testing” föratt utvärdera effekter av LME- påverkan. Eftersom även andra materialegenskaper spelar också stor roll för hur de de olika ståltyperna beter sig, är både oxidation och erosionskorrosion en del av detta arbete. De undersökta stålen inkluderade ett ferritiskt stål-EF100, tre olika typer av aluminiumoxidbildande autentiska stål-AFA, samt ett martensitiskt stål benämnt AFM. Dessa stål undersöktes inom temperaturintervallet 350-600 °C för blysamt 150-600 °C för LBE. Stålens mikrostrukturer analyserades för att öka förståelsen för de mekanismer som styr LME. Det ferritiska EF100-stålet visade inga tecken av att påverkas av LME i flytande Pb men var dock påverkat av LME in LBE. AFM-stålet betedde sig på ett liknande sätt som AF100-stålet men var påverkat av LME i både flytande Pb och LBE. AFA stålen påverkades varken av LME i Pb eller LBE men visade tecken på LME vid entemperatur av 570 °C. Omfattningen av erosions-korrosion undersöktes också vilken visade sig hastor påverkan hos stål innehållande nickel - Ni (316L och AFA3). Stål med en högre hårdhet och som bilade skyddande ytoxider påverkades väldigt lite (Kanthal AF, APMT, EF100,Alkrothal 14, aluminiumoxid belagd 316L, och AFM).

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 121
Series
TRITA-CBH-FOU ; 2024:61
Keywords
Liquid metal embrittlement (LME), Liquid metal corrosion, Lead, Lead-bismuth eutectic (LBE), EF100, Alumina-forming austenitic steel, Alumina-forming ferritic/martensitic steel, Erosion-corrosion, ANSYS FLUENT modelling, Nyckelord: Flytande metallförsprödning (LME), Flytande metallkorrosion, Bly, Bly-vismut eutektisk (LBE), EF100, Aluminiumoxidbildande austenitiskt stål, Aluminabildande ferritiskt/martensitiskt stål, Erosionskorrosion, ANSYS FLUENT modellering.
National Category
Metallurgy and Metallic Materials
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-356551 (URN)978-91-8106-145-1 (ISBN)
Public defence
2024-12-20, F3, Lindstedtsvägen 26, via Zoom: https://kth-se.zoom.us/j/67833310452, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, Lindstedtsvägen 26
Note

QC 2024-11-19

Available from: 2024-11-19 Created: 2024-11-18 Last updated: 2024-12-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Wong, Kin WingSzakalos, Peter

Search in DiVA

By author/editor
Wong, Kin WingSzakalos, Peter
By organisation
Nuclear EngineeringNuclear Science and Engineering
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 144 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf