kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impedance Analysis and Stability Assessment of Modular Multilevel Converters
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems. (Power Electronics)ORCID iD: 0000-0002-1136-581X
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Owing to their scalability, modular design, and high efficiency, modular multilevel converters (MMCs) are considered the state-of-the-art topology in high voltage dc (HVDC) and flexible ac transmission (FACT) systems. Ensuring converter- and system-level stability is crucial to facilitate the large-scale integration of these converters into future power grids. 

Similar to other power electronics systems, the stability of MMC interfaced dc and ac systems can be assessed via the impedance-based stability criterion, which requires detailed representation or measurement of the MMC terminal impedances. The main objective of this thesis is thus, to model the dc- and ac-side impedances of the MMCs taking into account various control system implementations. To this end, the impact of different control schemes and parameters on the converter impedances are thoroughly investigated, resulting in models that serve as tools for analyzing potential undesirable interactions between converter control dynamics and the system to which the converter is connected.

The thesis also focuses on developing impedance models in situations where parts of the control system are concealed for intellectual property protection. By combining frequency-domain system identification and harmonic linearization, these black-boxed control system components are integrated into the impedance model. This approach enables the analysis of the impact of outer-loop control settings on converter stability.

Finally, the thesis assesses the stability of several case studies in which MMCs are interfaced to dc or ac systems. Consequently, active damping solutions are proposed to mitigate harmonic resonances arising from the interaction of the converter and the dc or ac systems. Theoretical analyses are substantiated through time-domain simulations and laboratory experiments.

Key contributions include the development of impedance models under various control schemes and a method for estimating dc-side impedance in MMC systems with black-boxed control. The findings provide insights into impedance shaping, stability challenges, and effective damping strategies in MMC-based systems.

Abstract [sv]

Tack vare av sin skalbarhet, modulära design och höga verkningsgrad anses modulära multinivå-omvandlare (MMC) vara den främsta topologin för högspänd likströmsöverföring (HVDC) och flexibel växelströmstransmission (FACT). Att säkerställa stabilitet på omvandlar- och systemnivå är avgörande för att möjliggöra storskalig integration av dessa omvandlare i framtida elnät.

I likhet med andra kraftelektroniksystem kan stabiliteten hos MMC-anslutna likströms- och växelströmssystem bedömas genom det impedansbaserade stabilitetskriteriet, vilket kräver detaljerad modellering eller mätning av omvandlarnas-terminalimpedanserna. Huvudsyftet med denna avhandling är således att modellera likströms- och växelströmsimpedansen för MMC:erna vid olika implementeringar av styrsystemen. Därför undersöks inverkan av olika styrprinciper och parametrar på omvandlarens impedans, vilket resulterar i modeller som fungerar som verktyg för att analysera potentiella oönskade interaktioner mellan omvandlarens styrdynamik och det system som omvandlaren är ansluten till.

Avhandlingen fokuserar också på att utveckla impedansmodeller för situationer där delar av styrsystemet är dolda, för att skydda immateriella rättigheter. Genom att kombinera systemidentifiering i frekvensplanet och harmonisk linjärisering, integreras dessa dolda styrsystemkomponenter i impedansmodellen. Detta tillvägagångssätt gör det möjligt att analysera effekten av parameterval för yttre, ej dolda, reglerslingor på omvandlarens stabilitet.

Slutligen bedömer avhandlingen stabiliteten i flera fall där MMC:er ansluts till likströms- eller växelströmssystem. Följaktligen föreslås aktiva dämpningslösningar för att mildra övertonsresonanser som uppstår genom växelverkan mellan omvandlaren och likströms- eller växelströmssystemen. Teoretiska analyser underbyggs genom simuleringar i tidplanet och laboratorieexperiment.

Viktiga bidrag utgörs av utvecklingen av impedansmodeller under olika styrprinciper och en metod för att uppskatta likströmssidans impedans i MMC-system med black-box-styrning. Resultaten ger insikter i impedansstyrning, stabilitetsfrågor och effektiva dämpningsstrategier i MMC-baserade system.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. , p. ix, 65
Series
TRITA-EECS-AVL ; 2024:88
Keywords [en]
Converter control, converter-driven stability, frequency-domain analysis, harmonic linearization, impedance/admittance modeling, modular multilevel converter (MMC), partially black-boxed control
Keywords [sv]
Omvandlarstyrning, omvandlardriven stabilitet, frekvensdomänanalys, harmonisk linjärisering, impedans/admittansmodellering, modulär flernivåomvandlare (MMC), styrning med delvis svart låda.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-356602ISBN: 978-91-8106-112-3 (print)OAI: oai:DiVA.org:kth-356602DiVA, id: diva2:1914596
Public defence
2024-12-16, Sal H1, Teknikringen 33, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20241120

Available from: 2024-11-20 Created: 2024-11-19 Last updated: 2024-12-03Bibliographically approved
List of papers
1. Modeling and Shaping of the DC-Side Admittance of a Modular Multilevel Converter under Closed-Loop Voltage Control
Open this publication in new window or tab >>Modeling and Shaping of the DC-Side Admittance of a Modular Multilevel Converter under Closed-Loop Voltage Control
Show others...
2021 (English)In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107, Vol. 36, no 6, p. 7294-7306Article in journal (Refereed) Published
Abstract [en]

The dc-side admittance of a modular multilevel converter can be used in assessing the stability of the dc system by means of impedance-based stability criteria. An accurate mathematical representation of the small-signal admittance can be given using harmonic linearization. To this end, the effect of the internal dynamics of the converter, e.g., the circulating current, the converter control scheme, and the controller parameters on the admittance of the converter should be analyzed. In this paper, a linear analytical model for the dc-side admittance of the converter is derived based on a combination of harmonic linearization and frequency-domain representation which incorporates different control schemes. Moreover, an admittance model is given for the closed-loop voltage control mode of the converter, where the ideal insertion indices are applied. To this end, the impact of an arm-balancing controller and its parameters on the dc-side admittance of the converter is investigated. Finally, experiments are carried out on a down-scaled prototype to validate the accuracy of the analytical model.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2021
Keywords
Admittance, Voltage control, Harmonic analysis, Stability criteria, Mathematical model, Analytical models, Impedance
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-286824 (URN)10.1109/TPEL.2020.3041387 (DOI)000655512500101 ()2-s2.0-85097437352 (Scopus ID)
Funder
EU, Horizon 2020, 691714
Note

QC 20250304

Available from: 2020-12-01 Created: 2020-12-01 Last updated: 2025-03-04Bibliographically approved
2. DC-Side Impedance Estimation of a Modular Multilevel Converter Through System Identification of a Partially Black-Boxed Control System
Open this publication in new window or tab >>DC-Side Impedance Estimation of a Modular Multilevel Converter Through System Identification of a Partially Black-Boxed Control System
Show others...
2022 (English)In: IEEE transactions on energy conversion, ISSN 0885-8969, E-ISSN 1558-0059, Vol. 37, no 4, p. 2708-2721Article in journal (Refereed) Published
Abstract [en]

The stability of a power electronics system can be assessed by means of the impedance-based stability criterion. Impedance modeling is a useful tool to analyze the effect of different circuit parameters and control schemes on the behavior of a converter. Modeling the input impedance of a power electronics converter is often successful when having full knowledge of the converter topology, the circuit parameters, and the parameters and implementation of the control system. However, due to the proprietary nature of voltage source converter-based high voltage direct current systems, their exact control structure is often concealed. This complicates the calculation of the impedance of a modular multilevel converter, known for its complex internal dynamics. This paper proposes a method to estimate the impedance of a modular multilevel converter with partially black-boxed converter control. A discussion on partitioning the control system into open and closed parts is made, and the results are verified with simulations in time and frequency domains.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
Keywords
Modular multilevel converter (MMC), converter control, stability, impedance modeling, frequency-domain analysis, harmonic linearization, system identification, black-box
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Control Engineering
Identifiers
urn:nbn:se:kth:diva-315783 (URN)10.1109/tec.2022.3175802 (DOI)000895454600044 ()2-s2.0-85130461714 (Scopus ID)
Funder
Swedish Energy Agency
Note

QC 20230118

Available from: 2022-07-19 Created: 2022-07-19 Last updated: 2024-11-19Bibliographically approved
3. AC-Side Impedance-Based Stability Assessment in Grid-Forming Modular Multilevel Converters
Open this publication in new window or tab >>AC-Side Impedance-Based Stability Assessment in Grid-Forming Modular Multilevel Converters
2024 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 12, p. 23514-23528Article in journal (Refereed) Published
Abstract [en]

Grid-forming converters can emulate the behavior of a synchronous generator through frequency droop control. The stability of grid-forming modular multilevel converters can be studied via the impedance-based stability criterion. This paper presents an ac-side impedance model of a grid-forming modular multilevel converter which includes a complete grid-forming control structure. The impact of different control schemes and parameters on the closed-loop output impedance of the converter is thoroughly analyzed and the learnings have been used in mitigating undesired control interactions with the grid. The results are verified through simulations in time- and frequency-domains along with experiments on a down-scaled laboratory prototype.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
Keywords
Control interaction, frequency-domain analysis, grid-forming control, harmonic linearization, impedance modeling, modular multilevel converter (MMC), stability
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-343989 (URN)10.1109/ACCESS.2024.3365053 (DOI)001164026200001 ()2-s2.0-85185546685 (Scopus ID)
Note

QC 20240301

Available from: 2024-02-28 Created: 2024-02-28 Last updated: 2024-11-19Bibliographically approved
4. An Architecture for a Multi-Vendor VSC-HVDC Station With Partially Open Control and Protection
Open this publication in new window or tab >>An Architecture for a Multi-Vendor VSC-HVDC Station With Partially Open Control and Protection
Show others...
2022 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 10, p. 13555-13569Article in journal (Refereed) Published
Abstract [en]

High voltage direct current (HVDC) grids are envisioned for large-scale grid integration of renewable energy sources. Upon realization, components from multiple vendors have to be coordinated and interoperability problems can occur. To address these problems, a multi-vendor HVDC system can benefit from a partially open control and protection system. Unwanted interactions can be investigated and solved more easily in partially open software compared to when applying black-boxed and vendor-specific software. Although a partially open approach offers these advantages, practical aspects, such as the implementation in a real station architecture, have to be addressed carefully. This paper covers this important topic, first by reviewing the required control and protection functions and second by discussing the choice for certain open and closed software parts, their implementation in physical units as well as the required communication and interfaces. The result from this discussion is a first proposal of a station architecture for a multi-vendor HVDC system using partially open control and protection. This architecture will be a helpful starting point to industry and academia working with research and harmonization on this topic as ad-hoc solutions in terms of practical aspects can be avoided.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
Keywords
Architecture, converter stations, HVDC transmission, MMC control, open-source software
National Category
Computer Sciences
Identifiers
urn:nbn:se:kth:diva-309269 (URN)10.1109/ACCESS.2022.3146782 (DOI)000753417800001 ()2-s2.0-85124095481 (Scopus ID)
Note

QC 20220308

Available from: 2022-03-08 Created: 2022-03-08 Last updated: 2024-11-19Bibliographically approved
5. DC-Side Impedance Interaction Analysis in an MMC-Based Back-to-Back VSC-HVDC System
Open this publication in new window or tab >>DC-Side Impedance Interaction Analysis in an MMC-Based Back-to-Back VSC-HVDC System
2021 (English)In: IECON 2021 - 47Th Annual Conference Of The Ieee Industrial Electronics Society, Institute of Electrical and Electronics Engineers (IEEE) , 2021Conference paper, Published paper (Refereed)
Abstract [en]

In this paper, harmonic stability of a back-to-back modular multilevel converter based voltage source converter high voltage direct current system is analyzed. These systems are prone to ac- and dc-side resonances and interactions between the converter and its interconnected systems. The stability of the system can be predicted by the impedance based stability criterion, which requires the modeled or measured converter impedance. The analysis in this paper focuses on interoperability when the converters employ different control schemes in order to utilize the inherent damping properties of the sum capacitor voltage balancing control loops.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2021
Series
IEEE Industrial Electronics Society, ISSN 1553-572X
Keywords
Control interaction, converter control, harmonic stability, impedance modeling, MMC, VSC-HVdc
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-311620 (URN)10.1109/IECON48115.2021.9589592 (DOI)000767230603019 ()2-s2.0-85119471446 (Scopus ID)
Conference
47th Annual Conference of the IEEE-Industrial-Electronics-Society (IECON), OCT 13-16, 2021, ELECTR NETWORK
Note

Part of proceedings: ISBN 978-1-6654-3554-3

QC 20220502

Available from: 2022-05-02 Created: 2022-05-02 Last updated: 2024-11-19Bibliographically approved
6. DC-Side Impedance Modeling and Stability Assessment in Grid-Forming Modular Multilevel Converters
Open this publication in new window or tab >>DC-Side Impedance Modeling and Stability Assessment in Grid-Forming Modular Multilevel Converters
2023 (English)In: 2023 25TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, EPE'23 ECCE EUROPE, IEEE, 2023Conference paper, Published paper (Refereed)
Abstract [en]

Incorporation of inverter-based resources is progressively increasing in modern power systems. The absence of inherent physical inertia in converter-based systems has resulted in a decrease in the total inertia of the grid. Grid-forming control of voltage source converters emulates the workings of a conventional synchronous generator through frequency droop control, allowing the converter to provide inertial support while contributing to the support of grid voltage. This paper presents a dc-side impedance model of a grid-forming modular multilevel converter. A control interaction between a grid-forming and a grid-following converter in a back-to-back structure is investigated and a stabilizing compensator is proposed.

Place, publisher, year, edition, pages
IEEE, 2023
Series
European Conference on Power Electronics and Applications, ISSN 2325-0313
Keywords
Grid-forming, Harmonic stability, Impedance analysis, Modular multilevel converter
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-344952 (URN)10.23919/EPE23ECCEEurope58414.2023.10264662 (DOI)001098971403070 ()2-s2.0-85175178197 (Scopus ID)
Conference
25th European Conference on Power Electronics and Applications (EPE ECCE Europe), SEP 04-08, 2023, Aalborg, DENMARK
Note

QC 20240408

Part of ISBN 978-9-0758-1541-2

Available from: 2024-04-08 Created: 2024-04-08 Last updated: 2025-05-27Bibliographically approved

Open Access in DiVA

fulltext(5392 kB)319 downloads
File information
File name FULLTEXT01.pdfFile size 5392 kBChecksum SHA-512
daad3f3f8077bb423651242906b0e3e125b3c7f07a70618dd115f00f06bc6b56ad4d79e2fedaab33ea77496fff7447f721a74e400dfbd0af5afc10978984366e
Type fulltextMimetype application/pdf

Authority records

Nahalparvari, Mehrdad

Search in DiVA

By author/editor
Nahalparvari, Mehrdad
By organisation
Electric Power and Energy Systems
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 319 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 972 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf