kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Share the Unseen: Sequential Reasoning About Occlusions Using Vehicle-to-Everything Technology
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. Digital Futures, Stockholm, Sweden, Scania CV AB, Södertälje, Sweden.ORCID iD: 0000-0002-2069-6581
KTH, School of Industrial Engineering and Management (ITM), Engineering Design, Mechatronics and Embedded Control Systems. Digital Futures, Stockholm, Sweden.ORCID iD: 0000-0001-9982-578X
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control). Digital Futures, Stockholm, Sweden, Scania CV AB, Södertälje, Sweden.ORCID iD: 0000-0001-6030-2869
Scania CV AB, Södertälje, Sweden.ORCID iD: 0009-0000-7050-160X
Show others and affiliations
2024 (English)In: IEEE Transactions on Control Systems Technology, ISSN 1063-6536, E-ISSN 1558-0865, p. 1-14Article in journal (Refereed) Epub ahead of print
Abstract [en]

Vehicle-to-everything (V2X) communication holds significant promise for augmenting autonomous driving capabilities. Particularly in dense traffic with occluded areas, V2X can be used to share information about the respective observed areas between traffic participants. In turn, reducing uncertainty about unseen areas can lead to less conservative behaviors while maintaining collision avoidance.This paper aims to leverage V2X to improve situation awareness for trajectory planning. We particularly address two challenges: First, the ego vehicle may not always receive up-to-date information. Second, some areas may remain occluded despite receiving information from other participants.In this work, we fuse the received information about the detected free space. We use reachability analysis to compute areas that are guaranteed to be free despite being occluded. This way, we can maintain collision-avoidance guarantees. We demonstrate the benefits of our proposed method both in simulations and physical experiments.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2024. p. 1-14
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-359348DOI: 10.1109/tcst.2024.3499832ISI: 001367629700001Scopus ID: 2-s2.0-85210927559OAI: oai:DiVA.org:kth-359348DiVA, id: diva2:1932900
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20250203

Available from: 2025-01-30 Created: 2025-01-30 Last updated: 2025-05-27Bibliographically approved
In thesis
1. Mind the Unknown: Risk- and Occlusion-Aware Motion Planning for Autonomous Vehicles
Open this publication in new window or tab >>Mind the Unknown: Risk- and Occlusion-Aware Motion Planning for Autonomous Vehicles
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Autonomous vehicles (AVs) must navigate uncertain environments while ensuring safety, particularly in scenarios involving risk and occlusions. This thesis develops structured approaches to risk- and occlusion-aware motion planning, integrating theoretical advancements with real-world validation.

To address risk in motion planning, we introduce a framework that quantifies both the probability and severity of safety violations, enabling AVs to reason about risk while maintaining operational efficiency. Complementing this, we investigate pedestrian-aware motion planning in urban environments, incorporating a harm-based risk model to balance safety and progress in interactions with vulnerable road users.

Occlusions pose a major challenge by limiting direct visibility of critical road users. We develop a method for tracking and reasoning about hidden obstacles using reachability analysis and formal logics. By incorporating prior observations, our approach systematically refines possible states of occluded agents, reducing unnecessary conservatism. For high-speed driving, we refine velocity bounds on occluded traffic participants, preventing worst-case assumptions that could lead to excessive braking. Additionally, we explore vehicle-to-everything (V2X) communication to enhance situational awareness, enabling AVs to infer and share information about occluded regions in real time.

Finally, we propose an occlusion-aware planning framework that integrates tree-based motion planning with reachability-based occlusion tracking. This enables AVs to proactively reason about future observations—or their absence—ensuring robust decision-making under limited sensing. By reducing overly conservative constraints while maintaining safety guarantees, our approach addresses key issues in occlusion-aware motion planning.

Together, these contributions advance the ability of AVs to operate safely and efficiently in demanding environments, supporting scalable real-world deployment.

Abstract [sv]

Autonoma fordon måste fatta säkra beslut trots osäkerheter i trafiken, särskilt i riskfyllda situationer och när sikten är begränsad. Denna avhandling presenterar metoder för att planera ett fordons rörelser på ett sätt som tar hänsyn till både risker och skymda hinder. Här kombineras teoretiska resultat med praktisk validering i realistiska trafikförhållanden.

För att hantera riskerna i planeringen introducerar vi ett ramverk som systematiskt bedömer både sannolikheten och konsekvenserna av potentiella säkerhetsproblem. Detta möjliggör en mer nyanserad plan som tar hänsyn till säkerheten utan att begränsa fordonet i onödan. Vi studerar särskilt planering i stadstrafik och utvecklar en riskmodell som väger säkerhet mot effektiv framkomlighet vid möten med exempelvis fot\-gängare och cyklister.

Skymd sikt utgör en utmaning för autonoma fordon. För att bemöta detta utvecklar vi en metod baserad på räckviddsanalys och logisk slutledning, som kan resonera kring möjliga dolda trafikanter. Genom att använda tidigare observationer kan metoden utesluta omöjliga scenarier och därmed undvika överdrivet defensiva beslut. För motorvägskörning inför vi även antaganden om trafikanters möjliga accelerationer, vilket ytterligare minskar behovet av onödiga inbromsningar. Dessutom undersöker vi hur fordonskommunikation (V2X) kan användas för att dela information om skymda områden och därmed förbättra fordonens beslutsunderlag.

Slutligen föreslår vi ett planeringsramverk där en trädstruktur av möjliga rörelser kombineras med räckviddsanalys för att hantera skymd sikt. Detta tillåter att proaktivt resonera kring framtida observationer och deras möjliga frånvaro. På så sätt kan fordonen fatta säkra och effektiva beslut även när sikten är begränsad. Vår metod adresserar därmed viktiga utmaningar inom området och bidrar till att minska onödiga säkerhetsmarginaler utan att kompromissa med säkerheten. Tillsammans stärker dessa resultat autonoma fordons förmåga att navigera säkert och effektivt i komplexa trafikmiljöer. Detta öppnar för bredare användning i verkliga trafiksystem.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2025. p. 58
Series
TRITA-EECS-AVL ; 2025-42
National Category
Robotics and automation
Identifiers
urn:nbn:se:kth:diva-362364 (URN)978-91-8106-247-2 (ISBN)
Public defence
2025-05-09, Kollegiesalen,Brinellvägen 6, https://kth-se.zoom.us/j/62547376681, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Note

QC 20250415

Available from: 2025-04-15 Created: 2025-04-14 Last updated: 2025-04-28Bibliographically approved
2. Situation Awareness for Autonomous Agents under Limited Sensing
Open this publication in new window or tab >>Situation Awareness for Autonomous Agents under Limited Sensing
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Autonomous agents, such as robots and automated vehicles, rely on their ability to perceive and interpret their environment to make informed decisions and execute actions that align with their goals. A key aspect of this capability is situation awareness, which involves understanding the current state of the environment and predicting its future evolution. Traditional autonomous systems address perception and prediction as separate tasks within a sequential pipeline, where raw sensor data is processed into increasingly abstract representations. While this structured approach has driven significant advancements, it remains constrained by sensor limitations, including occlusions, measurement uncertainty, and adverse weather conditions.

This thesis investigates how predictions from past observations can enhance perception algorithms, enabling agents to infer missing information, reduce uncertainty, and better anticipate changes. To support this integration, alternative environment representations are explored that allow feedback between prediction and perception while capturing uncertainty. This tighter coupling improves decision-making, particularly in complex and partially observable environments.

The contributions include: (1) a reachability-based reasoning framework for tracking possible hidden obstacles; (2) its extension to handle delayed and partial external data; (3) a probabilistic mapping method, Transitional Grid Maps (TGM), that jointly models static and dynamic occupancy; and (4) an extension of TGM to mitigate weather-induced sensor noise.

The proposed methods are evaluated in simulated and real scenarios where traditional perception pipelines struggle, such as occluded, highly dynamic and noisy environments. By bridging the gap between perception and prediction, this work contributes to the development of more robust and intelligent autonomous systems.

Abstract [sv]

Autonoma agenter, såsom robotar och självkörande fordon, är beroende av sin förmåga att uppfatta och tolka omgivningen för att fatta välgrundade beslut och utföra handlingar i linje med sina mål. En viktig del av denna förmåga är situationsmedvetenhet, som innebär att förstå miljöns nuvarande tillstånd och förutse dess framtida utveckling. Traditionella autonoma system hanterar perception och prediktion som separata steg i en sekventiell kedja, där sensordata bearbetas till alltmer abstrakta representationer. Även om detta strukturerade tillvägagångssätt lett till stora framsteg, begränsas det av sensorbrister, inklusive skymda objekt, mätosäkerhet och ogynnsamt väder.

Denna avhandling undersöker hur prediktioner från tidigare observationer kan förbättra perceptionsalgoritmer, så att agenter kan sluta sig till saknad information, minska osäkerhet och bättre förutse förändringar. För att möjliggöra denna integration utforskas alternativa omgivningsrepresentationer som ger återkoppling mellan prediktion och perception, samtidigt som osäkerheter kan hanteras. Denna tätare koppling förbättrar beslutsfattandet, särskilt i komplexa och delvis observerbara miljöer.

Avhandlingens huvudsakliga bidrag inkluderar: (1) ett reso\-nemangs\-ramverk baserat på nåbarhet för att spåra möjliga dolda hinder; (2) dess utvidgning för att hantera fördröjd och ofullständig extern data; (3) en probabilistisk kartmetod, Transitional Grid Maps (TGM), som gemensamt modellerar statisk och dynamisk ockupation; och, (4) utvidgning av TGM för att förbättrad hantering av väderrelaterat sensorbrus.

Metoderna utvärderas i scenarier där traditionella perceptionskedjor har problem, exempelvis i skymda, mycket dynamiska och brusiga miljöer. Genom att överbrygga klyftan mellan perception och prediktion bidrar detta arbete till utvecklingen av robustare och intelligentare autonoma system.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 71
Series
TRITA-ITM-AVL ; 2025:29
National Category
Robotics and automation
Research subject
Machine Design
Identifiers
urn:nbn:se:kth:diva-363919 (URN)978-91-8106-330-1 (ISBN)
Public defence
2025-06-18, https://kth-se.zoom.us/j/66710325262, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Vinnova
Available from: 2025-05-27 Created: 2025-05-27 Last updated: 2025-06-09Bibliographically approved

Open Access in DiVA

fulltext(8846 kB)13 downloads
File information
File name FULLTEXT01.pdfFile size 8846 kBChecksum SHA-512
a7ee85f66dc2279795f721151efc28f6515465fa1843946161e072fdd14d97261823d58d8ae8f96c88ddda46b0f601c3aa6ba3f82d75d3bc53a5e4e116c69ded
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Nyberg, TrulsGaspar Sánchez, José ManuelNarri, VandanaMårtensson, JonasJohansson, Karl H.Törngren, MartinTumova, Jana

Search in DiVA

By author/editor
Nyberg, TrulsGaspar Sánchez, José ManuelNarri, VandanaPettersson, HenrikMårtensson, JonasJohansson, Karl H.Törngren, MartinTumova, Jana
By organisation
Robotics, Perception and Learning, RPLMechatronics and Embedded Control SystemsDecision and Control Systems (Automatic Control)
In the same journal
IEEE Transactions on Control Systems Technology
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 14 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 109 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf