Aromatic compounds serve as key feedstocks in the chemical industry, typically undergoing functionalization or full reduction. However, partial reduction via dearomative sequences remains underexplored despite its potential to rapidly generate complex three-dimensional scaffolds and the existing dearomative strategies often require metal-mediated multistep processes or suffer from limited applicability. Herein, a photocatalytic radical cascade approach enabling dearomative difunctionalization through selective spirocyclization/imination of nonactivated arenes is reported. The method employs bifunctional oxime esters and carbonates to introduce multiple functional groups in a single step, forming spirocyclic motifs and iminyl functionalities via N–O bond cleavage, hydrogen-atom transfer, radical addition, spirocyclization, and radical-radical cross-coupling. The reaction constructs up to four bonds (C−O, C−C, C−N) from simple starting materials. Its broad applicability is demonstrated on various substrates, including pharmaceuticals, and it is compatible with scale-up under flow conditions, offering a streamlined approach to synthesizing highly decorated three-dimensional frameworks.
QC 20250506