Online Prediction of User Enjoyment in Human-Robot Dialogue with LLMsShow others and affiliations
2025 (English)In: HRI 2025 - Proceedings of the 2025 ACM/IEEE International Conference on Human-Robot Interaction, Institute of Electrical and Electronics Engineers (IEEE) , 2025, p. 1363-1367Conference paper, Published paper (Refereed)
Abstract [en]
Large Language Models (LLMs) allow social robots to engage in unconstrained open-domain dialogue, but often make mistakes when employed in real-world interactions, requiring adaptation of LLMs to specific conversational contexts. However, LLM adaptation techniques require a feedback signal, ideally for multiple alternative utterances. At the same time, human-robot dialogue data is scarce and research often relies on external annotators. A tool for automatic prediction of user enjoyment in human-robot dialogue is therefore needed. We investigate the possibility of predicting user enjoyment turn-by-turn using an LLM, giving it a proposed robot utterance within the dialogue context, but without access to user response. We compare this performance to the system's enjoyment ratings when user responses are available and to assessments by expert human annotators, in addition to self-reported user perceptions. We evaluate the proposed LLM predictor in a human-robot interaction (HRI) dataset with conversation transcripts of 25 older adults' 7-minute dialogues with a companion robot. Our results show that an LLM is capable of predicting user enjoyment, without loss of performance despite the lack of user response and even achieving performance similar to that of human expert annotators. Furthermore, results show that the system surpasses expert annotators in its correlation with the user's self-reported perceptions of the conversation. This work presents a tool to remove the reliance on external annotators for enjoyment evaluation and paves the way toward real-time adaptation in human-robot dialogue.
Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2025. p. 1363-1367
Keywords [en]
human-robot interaction, large language model, open-domain dialogue, prediction, user enjoyment
National Category
Natural Language Processing Computer Sciences Robotics and automation Human Computer Interaction
Identifiers
URN: urn:nbn:se:kth:diva-363754DOI: 10.1109/HRI61500.2025.10973944Scopus ID: 2-s2.0-105004873166OAI: oai:DiVA.org:kth-363754DiVA, id: diva2:1959849
Conference
20th Annual ACM/IEEE International Conference on Human-Robot Interaction, HRI 2025, Melbourne, Australia, March 4-6, 2025
Note
Part of ISBN 9798350378931
QC 20250525
2025-05-212025-05-212025-05-25Bibliographically approved