Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A three-dimensional ultrasonic cage for characterization of individual cells
KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik. (Biomedical & X-Ray Physics)ORCID-id: 0000-0002-4720-2756
KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Cellens fysik. (Cell Physics)
KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik. (Biomedical & X-Ray Physics)
KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik. (Biomedical & X-Ray Physics)ORCID-id: 0000-0003-2723-6622
Vise andre og tillknytning
2008 (engelsk)Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 93, s. 063901-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We demonstrate enrichment, controlled aggregation, and manipulation of microparticles and cells by an ultrasonic cage integrated in a microfluidic chip compatible with high-resolution optical microscopy. The cage is designed as a dual-frequency resonant filleted square box integrated in the fluid channel. Individual particles may be trapped three dimensionally, and the dimensionality of one-dimensional to three-dimensional aggregates can be controlled. We investigate the dependence of the shape and position of a microparticle aggregate on the actuation voltages and aggregate size, and demonstrate optical monitoring of individually trapped live cells with submicrometer resolution.

sted, utgiver, år, opplag, sider
2008. Vol. 93, s. 063901-
Emneord [en]
optical manipulation; microfluidic chip; particles; traps
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-10916DOI: 10.1063/1.2971030ISI: 000258491000076Scopus ID: 2-s2.0-49749149572OAI: oai:DiVA.org:kth-10916DiVA, id: diva2:231812
Merknad
QC 20100730Tilgjengelig fra: 2009-08-18 Laget: 2009-08-18 Sist oppdatert: 2017-12-13bibliografisk kontrollert
Inngår i avhandling
1. Multidimensional Ultrasonic Standing Wave Manipulation in Microfluidic Chips
Åpne denne publikasjonen i ny fane eller vindu >>Multidimensional Ultrasonic Standing Wave Manipulation in Microfluidic Chips
2009 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The use of ultrasonic standing waves for contactless manipulation of microparticles in microfluidic systems is a field with potential to become a new standard tool in lab-on-chip systems. Compared to other contactless manipulation methods ultrasonic standing wave manipulation shows promises of gentle cell handling, low cost, and precise temperature control. The technology can be used both for batch handling, such as sorting and aggregation, and handling of single particles.

This doctoral Thesis presents multi-dimensional ultrasonic manipulation, i.e., manipulation in both two and three spatial dimensions as well as time-dependent manipulation of living cells and microbeads in microfluidic systems. The lab-on-chip structures used allow for high-quality optical microscopy, which is central to many bio-applications. It is demonstrated how the ultrasonic force fields can be spatially confined to predefined regions in the system, enabling sequential manipulation functions. Furthermore, it is shown how frequency-modulated signals can be used both for spatial stabilization of the force fields as well as for flow-free transport of particles in a microchannel. Design parameters of the chip-transducer systems employed are investigated experimentally as well as by numerical simulations. It is shown that three-dimensional resonances in the solid structure of the chip strongly influences the resonance shaping in the channel.

sted, utgiver, år, opplag, sider
Stockholm: KTH, 2009. s. ix, 83
Serie
Trita-FYS, ISSN 0280-316X ; 2009:44
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-10919 (URN)978-91-7415-398-9 (ISBN)
Disputas
2009-09-11, FD5, Roslagstullsbacken 21, Stockholm, 14:00 (engelsk)
Opponent
Veileder
Merknad
QC 20100730Tilgjengelig fra: 2009-09-01 Laget: 2009-08-18 Sist oppdatert: 2010-07-30bibliografisk kontrollert
2. Ultrasonic Handling of Living Cells in Microfluidic Systems
Åpne denne publikasjonen i ny fane eller vindu >>Ultrasonic Handling of Living Cells in Microfluidic Systems
2009 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Microfluidic chips have become a powerful tool in research where biological cells are processed and/or analyzed. One method for contactless cell manipulation in microfluidic chips that has gained an increasing amount of attention the last decade is ultrasonic standing wave (USW) technology. This Thesis explores the biocompatibility of USW technology applied to microfluidic chips, and presents a novel USW-based method for serial processing and accurate characterization of living cells.

The biocompatibility has been investigated by measuring the proliferation rate of cells after they had been trapped and aggregated inside a chip by ultrasound. No negative influence was observed after continuous exposure to 0.85 MPa pressure amplitudes for up to 75 min. Furthermore, the heat generation in the fluid channel caused by the ultrasound has been measured and used in a regulation scheme where the temperature can be controlled around any relevant temperature (e.g. 37‰) with ±0.1‰ accuracy for more than 12 hours. The proliferation rate and temperature investigations suggest that USW technology applied to microfluidic chips is a biocompatiblemethod useful for long-term handling of living cells.

We have introduced a new concept of contactless ultrasonic ”caging” of single cells or small aggregates of cells. These cages are channel segments in the microfluidic chips that are geometrically designed to resonate at one or several actuation frequencies. The actuation is performed remotely by up to five external frequency specific wedge transducers, where each transducer produces a localized and spatially confined standing wave with a specific orientation of its corresponding radiation force field. By multi-frequency actuation, sophisticated and flexible force fields are realized by both overlapping and separated single fields. The Thesis describes two different cages: A sub-mm ”micro-cage” for tree-dimensional manipulationof single cells, and a 5-mm ”mini-cage” for selective retention of small cell aggregates (up to approx. 10^3 cells) from a continuously feeding sample flow. Finally,our microfluidic chips were also designed to be compatible with high-resolution optical microscopy. We have demonstrated sub-μm-resolution confocal fluorescence and trans-illumination microscopy imaging of ultrasonically caged living cells.

sted, utgiver, år, opplag, sider
Stockholm: KTH, 2009. s. xi, 53
Serie
Trita-FYS, ISSN 0280-316X ; 2009:56
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-11500 (URN)978-91-7415-466-5 (ISBN)
Disputas
2009-11-27, FB42, Roslagstullsbacken 21, AlbaNova Universitetscentrum, Kungliga Tekniska Högskolan., Stockholm., 10:00 (engelsk)
Opponent
Veileder
Merknad
QC 20100811Tilgjengelig fra: 2009-11-17 Laget: 2009-11-17 Sist oppdatert: 2011-10-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopushttp://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000093000006063901000001&idtype=cvips&gifs=yes

Personposter BETA

Manneberg, OttoHertz, Hans M.Önfelt, Björn

Søk i DiVA

Av forfatter/redaktør
Manneberg, OttoVanherberghen, BrunoSvennebring, JessicaHertz, Hans M.Önfelt, BjörnWiklund, Martin
Av organisasjonen
I samme tidsskrift
Applied Physics Letters

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 124 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf