Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effects of glycerol content and film thickness on the properties of vital wheat gluten films cast at pH 4 and 1
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Polymera material.
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Polymera material.
2010 (engelsk)Inngår i: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 117, nr 6, s. 3506-3514Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This study deals with the optical properties and plasticizer migration properties of vital wheat gluten (WG) films cast at pH 4 and 11. The films contained initially 8, 16, and 25 wt % glycerol and were aged at 23 degrees C and 50% relative humidity for at least 17 weeks on a paper support to simulate a situation where a paper packaging is laminated with an oxygen barrier film of WG. The films, having target thicknesses of 50 and 250 mu m, were characterized visually and with ultraviolet/visible and infrared spectroscopy; the mass loss was measured by gravimetry or by a glycerol-specific gas chromatography method. The thin films produced at pH 4 were, in general, more heterogeneous than those produced at pH 11. The thin pH 4 films consisted of transparent regions surrounding beige glycerol-rich regions, the former probably rich in gliadin and the latter rich in glutenin. This, together with less Maillard browning, meant that the thin pH 4 films, in contrast to the more homogeneous (beige) thin pH 11 films, showed good contact clarity. The variations in glycerol content did not significantly change the optical properties of the films. All the films showed a significant loss of glycerol to the paper support but, after almost 9 months, the thick pH 11 film containing initially 25 wt % glycerol was still very flexible and, despite a better contact to the paper, had a higher residual glycerol content than the pH 4 film, which was also more brittle.

sted, utgiver, år, opplag, sider
2010. Vol. 117, nr 6, s. 3506-3514
Emneord [en]
biopolymers, diffusion, films, proteins, transparency
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-14027DOI: 10.1002/app.32235ISI: 000279958200051Scopus ID: 2-s2.0-77955957759OAI: oai:DiVA.org:kth-14027DiVA, id: diva2:329190
Merknad

QC 20100708. Updated from submitted to published, 20120315. Previous title: Comparison of properties between vital wheat gluten films, cast at pH 4 and pH 11: effects of glycerol content and film thickness

Tilgjengelig fra: 2010-07-08 Laget: 2010-07-08 Sist oppdatert: 2017-12-12bibliografisk kontrollert
Inngår i avhandling
1. Protein-based Packaging Films, Sheets and Composites: Process Development and Functional Properties
Åpne denne publikasjonen i ny fane eller vindu >>Protein-based Packaging Films, Sheets and Composites: Process Development and Functional Properties
2009 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The depletion of the petroleum resources and a number of environmental concerns led to considerable research efforts in the field of biodegradable materials over the last few decades. Of the diverse range of biopolymers, wheat gluten (WG) stands out as an alternative to synthetic plastics in packaging applications due to its attractive combination of flexibility and strength, high gas barrier properties under low humidity conditions and renewability. The availability of raw materials has also been largely increased with an increase in the production of WG as a low-cost surplus material due to increasing demand for ethanol as fuel. In this study, WG was processed into films, sheets and composites using some of the most widely used techniques including solution casting, compression molding, extrusion and injection molding, accompanying process optimizations and characterization of their functional properties. This thesis consists mainly of six parts based on the purpose of the study. The first part addresses the aging and optical properties of the cast film in order to understand the mechanisms and reasons for the time-dependant physical and chemical changes. The films plasticized with glycerol were cast from acidic (pH 4) and basic (pH11) solutions. The film prepared from the pH 11 solution was mechanically more stable upon aging than the pH 4 film, which was initially very ductile but became brittle with time. It was revealed that the protein structure of the pH 4 film was initially less polymerized/aggregated and the polymerization increased during storage but it did not reach the degree of aggregation of the pH 11 film. During aging, the pH 4 film lost more mass than the pH 11 film mainly due to migration of glycerol but also due to some loss of volatile mass. In addition the greater plasticizer loss of the pH 4 film was presumably due to its initial lower degree of protein aggregation/polymerization. Glycerol content did not significantly change the opacity and pH 4 films showed good contact clarity because of less Maillard reaction. In the second part, the heat-sealability of WG films was investigated, using an impulse-heat sealer, as the sealability is one of the most important properties in the use of flexible packaging materials. It was observed that the WG films were readily sealable while preserving their mechanical integrity. The sealing temperature had a negligible effect on the lap-shear strength, but the peel strength increased with sealing temperature. The lap-shear strength increased with increasing mold temperature and the failure mode changed. The third part describes the possibility of using industrial hemp fibers to reinforce wheat gluten sheets based on evaluation of the fiber contents, fiber distribution and bonding between the fibers and matrix. It was found that the hemp fibers enhanced the mechanical properties, in which the fiber contents played a significant role in the strength. The fiber bonding was improved by addition of diamine as a cross-linker, while the fiber distribution needed to be improved. The fourth part presents a novel approach to improve the barrier and mechanical properties of extruded WG sheets with a single screw extruder at alkaline conditions using 3-5wt.% NaOH with or without 1 wt.% salicylic acid. The oxygen barrier, at dry conditions, was improved significantly with the addition of NaOH, while the addition of salicylic acid yielded poorer barrier properties. It was also observed that the WG sheets with 3 wt.% NaOH had the most suitable combination of low oxygen permeability and relatively small time-dependant changes in mechanical properties, probably due to low plasticizer migration and an optimal protein aggregation/polymerization. In the fifth part WG/PLA laminates were characterized for the purpose of improving the water barrier properties. The lamination was performed at 110°C and scanning electron microscopy showed that the laminated films were uniform in thickness. The laminates significantly suppressed the mass loss and showed promising water vapor barrier properties in humid conditions indicating possible applications in packaging. The final part addresses the development of injection molding processes for WG. Injection-molded nanocomposites of WG/MMT were also characterized. WG sheets were successively processed using injection molding and the process temperatures were found to preferably be in a range of 170-200°C, which was varied depending on the sample compositions. The clay was found to enhance the processability, being well dispersed in the matrix. The natural clay increased the tensile stiffness, whereas the modified clay increased the surface hydrophobicity. Both clays decreased the Tg and increased the thermal stability of the nanocomposites. The overall conclusion was that injection molding is a promising method for producing WG items of simple shapes. Further studies will reveal if gluten can also be used for making more complex shapes.

sted, utgiver, år, opplag, sider
Stockholm: KTH, 2009. s. 81
Emneord
wheat gluten, solution casting, compression molding, extrusion, injection molding, aging, migration, opacity, heat sealability, hemp fiber, laminate, polylactic acid, clay, nanocomposites.
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-10567 (URN)978-91-7415-358-3 (ISBN)
Disputas
2009-06-12, H1, Teknikringen 33, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad
QC 20100708Tilgjengelig fra: 2009-06-04 Laget: 2009-05-26 Sist oppdatert: 2011-03-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Cho, Sung-WooGällstedt, MikaelHedenqvist, Mikael S.
Av organisasjonen
I samme tidsskrift
Journal of Applied Polymer Science

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 390 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf