CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt162",{id:"formSmash:upper:j_idt162",widgetVar:"widget_formSmash_upper_j_idt162",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt165_j_idt167",{id:"formSmash:upper:j_idt165:j_idt167",widgetVar:"widget_formSmash_upper_j_idt165_j_idt167",target:"formSmash:upper:j_idt165:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundaryPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2005 (English)In: Annales Scientifiques de l'Ecole Normale Supérieure, ISSN 0012-9593, E-ISSN 1873-2151, Vol. 38, no 3, p. 339-364Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2005. Vol. 38, no 3, p. 339-364
##### Keywords [en]

flows
##### Identifiers

URN: urn:nbn:se:kth:diva-15067ISI: 000232187800001OAI: oai:DiVA.org:kth-15067DiVA, id: diva2:333108
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt608",{id:"formSmash:j_idt608",widgetVar:"widget_formSmash_j_idt608",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt621",{id:"formSmash:j_idt621",widgetVar:"widget_formSmash_j_idt621",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt636",{id:"formSmash:j_idt636",widgetVar:"widget_formSmash_j_idt636",multiple:true});
##### Note

QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Let M be an m-dimensional differentiable manifold with a nontrivial circle action S = {S-t}(t is an element of R), St+1 = S-t, preserving a smooth volume mu. For any Liouville number alpha we construct a sequence of area-preserving diffeomorphisms H-n such that the sequence H-n circle S-alpha circle H-n(-1) converges to a smooth weak mixing diffeomorphism of M. The method is a quantitative version of the approximation by conjugations construction introduced in [Trans. Moscow Math. Soc. 23 (1970) 1]. For m = 2 and M equal to the unit disc D-2 = {x(2) + y(2) <= 1} or the closed annulus A = T x [0, 1] this result proves the following dichotomy: alpha is an element of R \ Q is Diophantine if and only if there is no ergodic diffeomorphism of M whose rotation number on the boundary equals alpha (on at least one of the boundaries in the case of A). One part of the dichotomy follows from our constructions, the other is an unpublished result of Michael Herman asserting that if alpha is Diophantine, then any area preserving diffeomorphism with rotation number alpha on the boundary (on at least one of the boundaries in the case of A) displays smooth invariant curves arbitrarily close to the boundary which clearly precludes ergodicity or even topological transitivity.

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1565",{id:"formSmash:j_idt1565",widgetVar:"widget_formSmash_j_idt1565",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1618",{id:"formSmash:lower:j_idt1618",widgetVar:"widget_formSmash_lower_j_idt1618",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1619_j_idt1621",{id:"formSmash:lower:j_idt1619:j_idt1621",widgetVar:"widget_formSmash_lower_j_idt1619_j_idt1621",target:"formSmash:lower:j_idt1619:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});