Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mechanical properties of high-density polyethylene and crosslinked high-density polyethylene in crude oil and its components
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
Vise andre og tillknytning
2006 (engelsk)Inngår i: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 44, nr 4, s. 641-648Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The tensile and stress-relaxation properties of an uncrosslinked and a loosely silane-crosslinked high-density polyethylene exposed to organic '' crude-oil '' penetrants were assessed. The measurements were performed on penetrant-saturated samples, surrounded by the organic liquid throughout the experiment. The penetrant solubilities in the two polymers were similar and in accordance with predicted values based on the solubility parameter method. The stiffness and strength of the swollen samples were significantly less than those of the dry samples, indicating a plasticization of the amorphous component. Raman spectroscopy on polyethylene exposed to deuterated n-hexane revealed a penetrant-induced partial melting/dissolution of the crystal surface and an intact crystal core component. The stress-relaxation rates, within the time frame of the experiment (similar to 1 s to 18 h), were approximately the same, independent of silane-crosslinks and the presence of penetrants. This indicated that the mechanical alpha-relaxation, which is the main relaxation process occurring in the measured time interval, was not affected by the penetrants. Consequently, its rate seemed to be independent of the crystal surface dissolution (decrease in the content of crystal-core interface). The shape of the '' log stress-log time '' curves of the swollen samples was, however, different from that of the dry samples. This was most likely attributed to a time-dependent saturation of penetrant to a higher level associated with the stretched state of the polymer sample. The silane crosslinks affected only the elongation at break, which was less than that of the uncrosslinked material.

sted, utgiver, år, opplag, sider
2006. Vol. 44, nr 4, s. 641-648
Emneord [en]
crude oil, HDPE, hydrocarbons, solubility, stress-relaxation, XLPE, transport-properties, alpha-relaxation, free-volume, polymers, hydrocarbons, morphology, diffusion, solvent, stress
Identifikatorer
URN: urn:nbn:se:kth:diva-15408DOI: 10.1002/polb.20729ISI: 000235088700001Scopus ID: 2-s2.0-33644603222OAI: oai:DiVA.org:kth-15408DiVA, id: diva2:333449
Merknad
QC 20100525Tilgjengelig fra: 2010-08-05 Laget: 2010-08-05 Sist oppdatert: 2017-12-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Gedde, Ulf W.Hedenqvist, Mikael S.
Av organisasjonen
I samme tidsskrift
Journal of Polymer Science Part B: Polymer Physics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 75 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf