Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On the interaction between two fixed spherical particles
Vise andre og tillknytning
2007 (engelsk)Inngår i: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 33, nr 7, s. 707-725Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The variation of the drag (CD) and lift coefficients (CL) of two fixed solid spherical particles placed at different positions relative each other is studied. Simulations are carried out for particle Reynolds numbers of 50, 100 and 200 and the particle position is defined by the angle between the line connecting the centers of the particles and the free-stream direction (a) and the separation distance (do) between the particles. The flow around the particles is simulated using two different methods; the Lattice Boltzmann Method (LBM), using two different computational codes, and a conventional finite difference approach, where the Volume of Solid Method (VOS) is used to represent the particles. Comparisons with available numerical and experimental data show that both methods can be used to accurately resolve the flow field around particles and calculate the forces the particles are subjected to. Independent of the Reynolds number, the largest change in drag, as compared to the single particle case, occurs for particles placed in tandem formation. Compared to a single particle, the drag reduction for the secondary particle in tandem arrangement is as high as 60%, 70% and 80% for Re = 50, 100 and 200, respectively. The development of the recirculation zone is found to have a significant influence on the drag force. Depending on the flow Situation in-between the particles for various particle arrangements, attraction and repulsion forces are detected due to low and high pressure regions, respectively. The results show that the inter-particle forces are not negligible even under very dilute conditions.

sted, utgiver, år, opplag, sider
2007. Vol. 33, nr 7, s. 707-725
Emneord [en]
dual particles, interaction, Volume of Solid (VOS), lattice Boltzmann method (LBM), low reynolds-numbers, particulate suspensions, flow characteristics, boltzmann-equation, viscous-fluid, drag force, spheres, motion, side, wake
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-16800DOI: 10.1016/j.ijmultiphaseflow.2007.02.001ISI: 000248068700002OAI: oai:DiVA.org:kth-16800DiVA, id: diva2:334843
Merknad

QC 20100525 QC 20111114

Tilgjengelig fra: 2010-08-05 Laget: 2010-08-05 Sist oppdatert: 2019-01-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Prahl Wittberg, Lisa

Søk i DiVA

Av forfatter/redaktør
Prahl Wittberg, LisaFuchs, Laszlo
I samme tidsskrift
International Journal of Multiphase Flow

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 173 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf