Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Non-Meissner electrodynamics and knotted solitons in two-component superconductors
KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Statistisk fysik.
2009 (Engelska)Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 79, nr 10Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

I consider electrodynamics and the problem of knotted solitons in two-component superconductors. Possible existence of knotted solitons in multicomponent superconductors was predicted several years ago. However, their basic properties and stability in these systems remain an outstandingly difficult question both for analytical and numerical treatment. Here I propose a special perturbative approach to treat self-consistently all the degrees of freedom in the problem. I show that there exists a length scale for a Hopfion texture where the electrodynamics of a two-component superconductor is dominated by a self-induced Faddeev term, which is in stark contrast to the Meissner electrodynamics of single-component systems. I also show that at certain short length scales knotted solitons in the two-component Ginzburg-Landau model are not described by a Faddeev-Skyrme-type model and are unstable. However, these solitons can be stable at some intermediate length scales. I argue that configurations with high topological charge may be more stable in these systems than low-charge configurations. In the second part of the paper I discuss qualitatively different physics of the stability of knotted solitons in a more general Ginzburg-Landau model and point out the physically relevant terms which enhance or suppress the stability of knotted solitons. With this argument it is demonstrated that Ginzburg-Landau models possess stable knotted solitons.

Ort, förlag, år, upplaga, sidor
2009. Vol. 79, nr 10
Nyckelord [en]
electrodynamics, Ginzburg-Landau theory, perturbation theory, solitons, texture, topology, field-theory
Identifikatorer
URN: urn:nbn:se:kth:diva-18322DOI: 10.1103/PhysRevB.79.104506ISI: 000264768600100Scopus ID: 2-s2.0-63249093552OAI: oai:DiVA.org:kth-18322DiVA, id: diva2:336368
Anmärkning
QC 20100525Tillgänglig från: 2010-08-05 Skapad: 2010-08-05 Senast uppdaterad: 2017-12-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Babaev, Egor
Av organisationen
Statistisk fysik
I samma tidskrift
Physical Review B. Condensed Matter and Materials Physics

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 277 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf