Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The rate of homolysis of adducts of peroxynitrite to the C=O double bond
KTH, Tidigare Institutioner                               , Kemi.
KTH, Tidigare Institutioner                               , Kemi.
2002 (engelsk)Inngår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 124, nr 1, s. 40-48Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Nucleophilic additon of the peroxynitrite anion, ONOO-, to the two prototypical carbonyl compounds, acetalclehyde and acetone, was investigated in the pH interval 7.4-14. The process is initiated by fast equilibration between the reactants and the corresponding tetrahedral adduct anion, the equilibrium being strongly shifted to the reactant side. The adduct anion also undergoes fast protonation by water and added buffers. Consequently, the rate of the bimolecular reaction between ONOO- and the carbonyl is strongly dependent on the pH and on the concentration of the buffer. The pK(a) of the carbonyl-ONOO adduct was estimated to be similar to11.8 and similar to12.3 for acetone and acetaldehyde, respectively. It is shown that both the anionic and the neutral adducts suffer fast homolysis along the weak O-O bond to yield free alkoxyl and nitrogen dioxide radicals. The yield of free radicals was determined to be about 15% with both carbonyl compounds at low and high pH, while the remainder collapses to molecular products in the solvent cage, The rate constants for the homolysis of the adducts vary from ca. 3 x 10(5) to ca. 5 x 10(6) s(-1), suggesting that they cannot act as oxidants in biological systems. This small variation around a mean value of about 10(6) s(-1) suggests that the O-O bond in the adduct is rather insensitive to its protonation state and to the nature of its carbonyl precursor. An overall reaction scheme was proposed, and all the corresponding rate constants were evaluated. Finally, thermokinetic considerations were employed to argue that the formation of dioxirane as an intermediate in the reaction of ONOO- with acetone is an unlikely process.

sted, utgiver, år, opplag, sider
2002. Vol. 124, nr 1, s. 40-48
Emneord [en]
ketone-catalyzed decomposition, biological-activity, aqueous-solutions, pulse-radiolysis, carbon-dioxide, acid, radicals, mechanisms, oxidation, decay
Identifikatorer
URN: urn:nbn:se:kth:diva-21255DOI: 10.1021/ja011799xISI: 000173217900017OAI: oai:DiVA.org:kth-21255DiVA, id: diva2:339953
Merknad
QC 20100525Tilgjengelig fra: 2010-08-10 Laget: 2010-08-10 Sist oppdatert: 2017-12-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Merenyi, GaborLind, Johan
Av organisasjonen
I samme tidsskrift
Journal of the American Chemical Society

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 29 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf