Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Modeling water and heat balance of the boreal landscape - comparison of forest and arable land in Scandinavia
KTH, Tidigare Institutioner, Mark- och vattenteknik.
KTH, Tidigare Institutioner, Mark- och vattenteknik.
2004 (engelsk)Inngår i: Journal of applied meteorology (1988), ISSN 0894-8763, E-ISSN 1520-0450, Vol. 43, nr 11, s. 1750-1767Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The water and heat balances of an arable field and a forest in the boreal zone in Scandinavia were explored using 3 yr of observations and simulations with two different soil - vegetation - atmosphere transfer (SVAT) models over a 30-yr period. Results from a detailed mechanistic model [ coupled heat and mass transfer model ( COUP)] were compared with those obtained with a large-scale type of SVAT model used in the weather prediction model at the European Centre for Medium-Range Weather Forecasts [ECMWF tiled land surface scheme (TESSEL)]. The COUP model simulations agreed well with the observations from a seasonal perspective. The TESSEL model differed significantly from the measurements when standard operational parameter values were used. The introduction of a seasonal variation in leaf-area index values, tuned canopy resistance for forest, and a reduced roughness length over snow-covered open land reduced the discrepancies. Net radiation was 40% higher in the forest when compared with the arable land, based on 30-yr simulations with both models. Furthermore, the forest was a net source of sensible heat flux, whereas the arable land was a net sink. Because of different treatment of winter interception evaporation, forest latent heat flux based on the COUP model considerably exceeded that from the TESSEL model, and suggested that the total annual evaporation was higher from the forest than from arable land. The representation of interception evaporation in winter, as well as seasonal dynamics in vegetation properties are, thus, of considerable importance for adequate simulation of forest and arable land energy fluxes within the boreal zone.

sted, utgiver, år, opplag, sider
2004. Vol. 43, nr 11, s. 1750-1767
Emneord [en]
long-term measurements, plant-atmosphere variables, surface parameterization, future-directions, intercepted snow, growing-season, energy-balance, ecmwf model, grass ley, evaporation
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-23963DOI: 10.1175/JAM2163.1ISI: 000225806600015Scopus ID: 2-s2.0-11344258103OAI: oai:DiVA.org:kth-23963DiVA, id: diva2:342662
Merknad
QC 20100525 QC 20110915Tilgjengelig fra: 2010-08-10 Laget: 2010-08-10 Sist oppdatert: 2017-12-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Gustafsson, DavidJansson, Per-Erik
Av organisasjonen
I samme tidsskrift
Journal of applied meteorology (1988)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 65 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf