Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A General Galerkin Finite Element Method for the Compressible Euler Equations
KTH, Skolan för datavetenskap och kommunikation (CSC), Numerisk analys, NA.ORCID-id: 0000-0003-4256-0463
KTH, Skolan för datavetenskap och kommunikation (CSC), Numerisk analys, NA.
2008 (engelsk)Inngår i: SIAM Journal on Scientific Computing, ISSN 1064-8275, E-ISSN 1095-7197Artikkel i tidsskrift (Fagfellevurdert) Submitted
Abstract [en]

In this paper we present a General Galerkin (G2) method for the compressible Euler equations, including turbulent ow. The G2 method presented in this paper is a nite element method with linear approximation in space and time, with componentwise stabilization in the form  of streamline diusion and shock-capturing modi cations. The method conserves mass, momentum  and energy, and we prove an a posteriori version of the 2nd Law of thermodynamics for the method.  We illustrate the method for a laminar shock tube problem for which there exists an exact analytical  solution, and also for a turbulent flow problem

sted, utgiver, år, opplag, sider
2008.
Emneord [en]
General Galerkin G2 method, stabilized finite element method, turbulent compressible flow, second law of thermodynamics
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-25410OAI: oai:DiVA.org:kth-25410DiVA, id: diva2:358020
Merknad
QS 20120314Tilgjengelig fra: 2010-10-20 Laget: 2010-10-20 Sist oppdatert: 2017-12-12bibliografisk kontrollert
Inngår i avhandling
1. An adaptive finite element method for the compressible Euler equations
Åpne denne publikasjonen i ny fane eller vindu >>An adaptive finite element method for the compressible Euler equations
2009 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This work develops a stabilized finite element method for the compressible Euler equations and proves an a posteriori error estimate for the approximated solution. The equations are approximated by the cG(1)cG(1) finite element method with continuous piecewise linear functions in space and time. cG(1)cG(1) gives a second order accuracy in space, and corresponds to a Crank-Nicholson type of discretization in time, resulting in second order accuracy in space, without a stabilization term.

The method is stabilized by componentwise weighted least squares stabilization of the convection terms, and residual based shock capturing. This choice of stabilization gives a symmetric stabilization matrix in the discrete system. The method is successfully implemented for a number of benchmark problems in 1D, 2D and 3D. We observe that cG(1)cG(1) with the above choice of stabilization is robust and converges to an accurate solution with residual based adaptive mesh refinement.

We then extend the General Galerkin framework from incompressible to compressible flow, with duality based a posteriori error estimation of some quantity of interest. The quantities of interest can be stresses, strains, drag and lift forces, surface forces or a mean value of some quantity. In this work we prove a duality based a posteriori error estimate for the compressible equations, as an extension of the earlier work for incompressible flow [25].

The implementation and analysis are validated in computational tests both with respect to the stabilization and the duality based adaptation

 

 

 

sted, utgiver, år, opplag, sider
Stockholm: KTH, 2009. s. xii, 39
Serie
Trita-CSC-A, ISSN 1653-5723 ; 2009:13
Identifikatorer
urn:nbn:se:kth:diva-10582 (URN)978-91-7415-365-1 (ISBN)
Presentation
2009-06-10, D42, KTH, Lindstedtsvägen 5, Plan 4, Stockholm, 14:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2009-05-28 Laget: 2009-05-28 Sist oppdatert: 2010-10-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Nada-KTH

Personposter BETA

Hoffman, Johan

Søk i DiVA

Av forfatter/redaktør
Hoffman, JohanNazarov, Murtazo
Av organisasjonen
I samme tidsskrift
SIAM Journal on Scientific Computing

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 303 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf