kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Visualization and Analysis of Superparamagnetic Iron Oxide Nanoparticles in the Inner Ear by Light Microscopy and Energy Filtered TEM
Carl Zeiss NTS GmbH.
Medical University of Innsbruck.
KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
Medical University of Innsbruck.
Show others and affiliations
2011 (English)In: Nanomedicine: Nanotechnology, Biology, and Medicine, ISSN 1549-9634, Vol. 7, no 3, p. 360-369Article in journal (Refereed) Published
Abstract [en]

Nanoparticles as potential carriers for local drug transfer are an alternative to systemic drug delivery into the inner ear. We report on the first in vitro tests of a new ferrogel consisting of superparamagnetic iron oxide nanoparticles (SPIONs) and a Pluronic (R) F127 (PF127) copolymer. Pluronic copolymers possess a unique viscosity-adjustable property that makes PF127 gels easy to handle compared to conventional cross-linked hydrogels. This ferrogel was successfully tested in cadaver human temporal bones as well as in organotypic explant cultures of mouse inner ears. SPIONs were identified by light microscopy and localized with different imaging modes in energy-filtered transmission electron microscopy. Our approach shows a promising possibility to use iron oxide nanoparticles, which are suitable for visualization and characterization at both the light- and electron-microscopic levels.

From the Clinical Editor: The authors report the first in vitro tests of a new ferrogel consisting of superparamagnetic iron oxide nanoparticles (SPIONs) and a Pluronic (R) F127 (PF127) copolymer for drug delivery in the inner ear, demonstrasting a promising possibility to use iron oxide nanoparticles, which are suitable for visualization and characterization at both the light- and electron-microscopic levels.

Place, publisher, year, edition, pages
2011. Vol. 7, no 3, p. 360-369
Keywords [en]
Energy filtered transmission electron microscopy, Organotypic inner ear explant culture, Human temporal bone, Iron oxide nanoparticles
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-26787DOI: 10.1016/j.nano.2010.11.005ISI: 000291032800013PubMedID: 21146633Scopus ID: 2-s2.0-79956340120OAI: oai:DiVA.org:kth-26787DiVA, id: diva2:372725
Note
QC 20101210 Uppdaterad från submitted till published (20110627).Available from: 2010-11-26 Created: 2010-11-26 Last updated: 2024-03-18Bibliographically approved
In thesis
1. Multifunctional nanomaterials for diagnostic and therapeutic applications
Open this publication in new window or tab >>Multifunctional nanomaterials for diagnostic and therapeutic applications
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the past few years, the use of nanostructured materials in medical applications hasdramatically increased, both in the research phase and for clinical purposes, due to thepeculiar properties and the ability of such materials to interact at a similar scale withbiological entities. In this thesis, we developed tailored magnetic multifunctionalnanoparticles for diagnostic and therapeutic applications, such as detection ofbiomolecules, simultaneous enhanced magnetic resonance imaging (MRI), fluorescentvisualization and controlled drug release.For sensitive and selective detection of specific biomolecules, thermally blocked ironoxide nanoparticles with tailored magnetic properties were developed. The formation ofsuch nanoparticles has been studied both in terms of size and magnetic behavior in liquidsuspension or in polymer matrixes. These particles with narrow size distribution (averagediameter of 19 nm) were surface functionalized by antigen molecules and were used forthe detection of Brucella antibodies in biological samples. The binding of biomoleculesresults in an increase in the particle’s hydrodynamic diameter, affecting the relaxationbehavior that was monitored by magnetic measurements. This sensing system is a fastand sensitive biosensor with very low detection limits (0.05 μg/mL).Superparamagnetic iron oxide nanoparticles (SPION) have been synthesized withaverage diameter of 10-12 nm, narrow size distribution, high crystallinity and superiormagnetic properties as liquid suspensions or embedded in a bulk transparent magneticnanocomposite. These nanoparticles were synthesized in organic solvents and, after phasetransfer with Pluronic F127 amphiphilic copolymer, show excellent relaxivity properties(high r2/r1 ratio) and great contrast enhancement in T2 weighted MRI, confirmed by invivostudies of rat inner ear.SPION have been used as a component for different multifunctional nanostructures. Thefirst system based on poly (L,L lactide)-methoxy polyethylene glycol (PLLA-mPEG)copolymer has been prepared by an emulsion/evaporation process that lead to polymericnanoparticles containing several imaging agents, such as SPION, quantum dots (QDs)and gold nanorods as well as indomethacin (IMC) as therapeutic payload. With a similarprocedure, but using poly (lactide-co-glycolide) (PLGA-PEG-NH2) copolymer, a secondtype of multifunctional nanoparticles has been obtained. Their size can be tailored from70 to 150 nm varying synthesis parameters, such as the surfactant concentration or waterto oil ratio. Both these polymer-based multifunctional nanoparticles can be visualized byfluorescence microscopy (QDs photoemission) and MRI (SPION magnetization) and theycan be used for photothermal therapy (gold nanorods) and drug delivery. The last systemconsists of SPION nanoparticles coated with PLLA directly on the surface by an in-situpolymerization process. A hydrophobic drug was loaded before the phase transfer withPluronic F127 and these nanoparticles show simultaneous MRI T2 contrast enhancementas well as high drug loading and sustained delivery.Controlling the drug release rate is also a critical parameter for tailored therapeutictreatments, and for this reason we developed a novel drug delivery system based on theintegration of SPION and Pluronic F127 gels. IMC was loaded in the ferrogel (with atailored gelation temperature) and its release rate was triggered by applying an externalmagnetic field owing to the SPION magnetic properties.

Place, publisher, year, edition, pages
Stockholm: KTH, 2010. p. xii, 70
Series
Trita-ICT/MAP AVH, ISSN 1653-7610 ; 2010:11
National Category
Dentistry
Identifiers
urn:nbn:se:kth:diva-26788 (URN)978-91-7415-803-8 (ISBN)
Public defence
2010-12-17, C2, KTH-Electrum, Isafjordsgatan 24, Kista, 13:30 (English)
Opponent
Supervisors
Note
QC 20101207Available from: 2010-12-07 Created: 2010-11-26 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Muhammed, Mamoun

Search in DiVA

By author/editor
Fornara, AndreaQin, JianMuhammed, Mamoun
By organisation
Functional Materials, FNM
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 83 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf