Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Experimental demonstration of an ultracompact polarization beamsplitter based on a multimode interference coupler with internal photonic crystals
KTH, Skolan för informations- och kommunikationsteknik (ICT), Materialfysik.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Materialfysik.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Materialfysik.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Mikroelektronik och Informationsteknik, IMIT.
Visa övriga samt affilieringar
2010 (Engelska)Ingår i: Optical Engineering: The Journal of SPIE, ISSN 0091-3286, E-ISSN 1560-2303, Vol. 49, nr 6, s. 060503-Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The fabrication and characterization of a compact InP-based polarization beamsplitter (PBS) is presented. A multimode interference (MMI) coupler with an internal air hole photonic crystal (PhC) section is utilized to separate the two polarizations. The PhC structure in the middle of the MMI is polarization dependent, so that one polarization is reflected and the other one is transmitted; both are collected by the respective output ports of the MMI coupler. The obtained experimental results show that the PBS as short as similar to 400 mu m has an extinction ratio as large as 15 dB.

Ort, förlag, år, upplaga, sidor
2010. Vol. 49, nr 6, s. 060503-
Nyckelord [en]
polarization beamsplitter, multimode interference, photonic crystal, InP
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
URN: urn:nbn:se:kth:diva-26874DOI: 10.1117/1.3454377ISI: 000280746600003Scopus ID: 2-s2.0-80855129213OAI: oai:DiVA.org:kth-26874DiVA, id: diva2:373432
Anmärkning
QC 20101130Tillgänglig från: 2010-11-30 Skapad: 2010-11-29 Senast uppdaterad: 2017-12-12Bibliografiskt granskad
Ingår i avhandling
1. Technology and properties of InP-based photonic crystal structures and devices
Öppna denna publikation i ny flik eller fönster >>Technology and properties of InP-based photonic crystal structures and devices
2012 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Photonic crystals (PhCs) are periodic dielectric structures that exhibit a photonic band gap; a range of wavelengths for which light propagation is forbidden. 2D PhCs exhibit most of the properties as their three dimension counterparts with a compatibility with standard semiconductor processing techniques such as epitaxial growth, electron beam lithography, Plasma deposition/etching and electromechanical lapping/polishing. Indium Phosphide (InP) is the material of choice for photonic devices especially when it comes to realization of coherent light source at 1.55 μm wavelength. Precise engineering of the nanostructures in the PhC lattice offers novel ways to confine, guide and control light in phonic integrated circuits (PICs). Strong confinement of light in PhCs offer novel opportunities in many areas of physics and engineering.

Dry etching, a necessary process step in PhC device manufacturing, is known to introduce damage in the etched material. Process induced damage and its impact on the electrical and optical properties of PhCs depends on the etched material, the etching technique and process parameters. We have demonstrated a novel post-etch process based on so-called mass-transport (MT) technology for the first time on InP-based PhCs that has significantly improved side-wall verticality of etched PhC holes. A statistical analysis performed on several devices fabricated by MT process technology shows a great deal of improvement in the reliability of optical transmission characteristics which is very promising for achieving high optical quality in PhC components. Several PhC devices were manufactured using MT technology.

Broad enough PhC waveguides that operate in the mono/multi-mode regime are interesting for coarse wavelength de-multiplexing. The fundamental mode and higher order mode interaction creates mini-stop band (MSB) in the dispersion diagram where the higher order mode has a lower group velocity which can be considered as slow light regime. In this thesis work, the phenomena of MSBs and its impact on transmission properties have been evaluated. We have proposed and demonstrated a method that enables spectral tuning with sub-nanometer accuracy which is based on the transmission MSB. Along the same lines most of the thesis work relates to broad enough PhC guides that operated in the multimode regime. Temperature tuning experiments on these waveguides reveals a clear red-shift with a gradient of dλ/dT=0.1 nm/˚C. MSBs in these waveguides have been studied by varying the width in incremental amounts.

Analogous to semiconductors heterostructures, photonic heterostructures are composed of two photonic crystals with different band-gaps obtained either by changing the air-fill factor or by the lattice constant. Juxtaposing two PhC and the use of heterostructures in waveguide geometry has been experimentally investigated in this thesis work. In particular, in multimode line defect waveguides the “internal” MSB effect brings a new dimension in single junction-type photonic crystal waveguide (JPCW) and heterostructure W3 (HW3) for fundamental physics and applications. We have also fabricated an ultra-compact polarization beam splitter (PBS) realized by combining a multimode waveguide with internal PhC. MSBs in heterostructure waveguides have shown interesting applications such as designable band-pass flat-top filters, and resonance-like filters with high transmission.

In the course of this work, InGaAsP suspended membrane technology was developed. An H2 cavity with a linewidth of ~0.4 nm, corresponding to a Q value of ~3675 has been shown. InGaAsP PhC membrane is an ideal platform to study coupled quantum well/dot-nanocavity system.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2012. s. xii, 64
Serie
Trita-ICT/MAP AVH, ISSN 1653-7610 ; 2012:14
Nyckelord
Integrated optics materials, Photonic crystals, Planar waveguides, Dispersion, Band-gap, Mode-gap, mini-stopband, InP, Nanostructure fabrication, dry etching, mass transport; material reflow; reliability
Nationell ämneskategori
Teknik och teknologier Naturvetenskap
Forskningsämne
SRA - Informations- och kommunikationsteknik
Identifikatorer
urn:nbn:se:kth:diva-101662 (URN)978-91-7501-442-5 (ISBN)
Disputation
2012-09-17, Sal C2, Electrum 229 Isafjordsgatan 22-26, Kista, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet
Anmärkning

QC 20120831

Tillgänglig från: 2012-08-31 Skapad: 2012-08-30 Senast uppdaterad: 2012-09-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

He, Sailing

Sök vidare i DiVA

Av författaren/redaktören
Shi, YaochengShahid, NaeemLi, MingyuBerrier, AudreyHe, SailingAnand, Srinivasan
Av organisationen
MaterialfysikMikroelektronik och Informationsteknik, IMIT
I samma tidskrift
Optical Engineering: The Journal of SPIE
Atom- och molekylfysik och optik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 88 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf