Öppna denna publikation i ny flik eller fönster >>2013 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]
This thesis is divided into four parts, all centered around Constitutional Dynamic Chemistry (CDC) and Dynamic Kinetic Resolution (DKR) using biocatalysts for selective transformations, and their applications in screening of bioactive compounds, organic synthesis, and enzyme classification.
In part one, an introduction to CDC and DKR is presented, illustrating the basic concepts, practical considerations and potential applications of such dynamic systems, thus providing the background information for the studies in the following chapters.
In part two, Dynamic Systemic Resolution (DSR), a concept based on CDC is exemplified. With enzyme-catalyzed transformations as external selection pressure, optimal structures can be selected and amplified from the system. This concept is expanded to various types of dynamic systems containing single, double cascade/parallel, and multiple reversible reactions. In addition, the substrate selectivity and catalytic promiscuity of target enzymes are also investigated.
In part three, DKR protocols using reversible reactions for substrate racemizations are illustrated. Biocatalysts are here employed for asymmetric transformations, resulting in efficient synthetic pathways for enantioenriched organic compounds.
Part four demonstrates two unique applications of CDC: one resulting in enzyme classification by use of pattern recognition methodology; the other involving enzyme self-inhibition through in situ transformation of stealth inhibitors employing the catalytic activity of the target enzyme.
Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2013. s. 71
Serie
Trita-CHE-Report, ISSN 1654-1081 ; 2013:29
Nyckelord
constitutional dynamic chemistry, dynamic systemic resolution, dynamic kinetic resolution, enzyme catalysis, transesterification, enzyme promiscuity, asymmetric synthesis, pattern recognition, self-inhibition.
Nationell ämneskategori
Organisk kemi
Identifikatorer
urn:nbn:se:kth:diva-123089 (URN)978-91-7501-804-1 (ISBN)
Disputation
2013-08-23, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning
QC 20130614
2013-06-142013-05-312013-06-14Bibliografiskt granskad