Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Structural modification of commercial lignosulphonates through laccase catalysis and ozonolysis
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
2010 (engelsk)Inngår i: Industrial crops and products (Print), ISSN 0926-6690, E-ISSN 1872-633X, Vol. 32, nr 3, s. 458-466Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Lignosulphonates are by-products from the sulphite pulping process, in which lignin is separated from cellulose by the addition of sulphonic acid groups to the alpha-position of lignin, thereby increasing the solubility of lignin in water. The predominant industrial utilisations of lignosulphonates are as dispersants, plasticisers and water-reducing agents in concrete preparation. The ability of lignosulphonates to function as a good plasticisers and water reducers is intimately linked with the purity of the lignosulphonate, its molecular weight and the number of charged groups present in the macromolecule. Currently, lignosulphonates are outrivaled by synthetic plasticisers termed superplasticisers due to their superior properties when used as additives to high-strength concrete. If lignosulphonates are to successfully compete with these superplasticisers, significant modifications are required. This paper describes a two-stage treatment of lignosulphonates in which the molecular weight is increased through laccase oxidation and carboxylic groups are introduced through ozonolysis. The technical significance of the results is also discussed.

sted, utgiver, år, opplag, sider
2010. Vol. 32, nr 3, s. 458-466
Emneord [en]
Lignosulphonates, Biotechnology, Plasticisers, Concrete, Cement, Laccase, Ozonolysis, Molecular weight, Carboxylic acids
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-27083DOI: 10.1016/j.indcrop.2010.06.016ISI: 000283962300042Scopus ID: 2-s2.0-77957243430OAI: oai:DiVA.org:kth-27083DiVA, id: diva2:376275
Merknad
QC 20101210Tilgjengelig fra: 2010-12-10 Laget: 2010-12-06 Sist oppdatert: 2017-12-11bibliografisk kontrollert
Inngår i avhandling
1. Structural Modifications of Lignosulphonates
Åpne denne publikasjonen i ny fane eller vindu >>Structural Modifications of Lignosulphonates
2011 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Lignosulphonates are by‐products from the sulphite pulping process for the manufacture ofspecialty dissolving pulps and paper. During the liberation of the cellulose, the lignin isfractionated and solubilised through covalent addition of sulphonic acid groups at variouspositions in the structure. The formed sulphonated lignin, lignosulphonate is then furtherisolated and refined.

The amphiphilic nature of lignosulphonates has enabled them to be used as additives to varioussuspensions to improve their dispersion and stability. The by far largest utilisation oflignosulphonates is as dispersants in concrete. Here, lignosulphonates act by dispersing cementparticles to prevent flocculation, un‐even particle distribution and reduced strengthdevelopment. The dispersion is achieved through steric and electrostatic repulsion of the cementparticles by the lignosulphonate polymer. This behaviour is intimately linked with the overallsize and amount of charged groups in the dispersing polymer. Traditional modifications oflignosulphonates have been limited to removal of sugars, filtration and fractionation. Thesemodifications are not sufficient for utilisation of lignosulphonates in high‐strength concrete. Heresynthetic dispersants and superplasticisers are used which are considerably more efficient evenat low dosages. To compete with these, additional modifications of lignosulphonates are likely tobe necessary. The molecular weight and functional group composition have been identified anddescribed as the most interesting parameters that can be modified.

Currently, no suitable method exists to increase the molecular weight of lignosulphonates.Oxidation by the natural radical initiating enzyme laccase is an interesting tool to achieve suchmodifications. In this thesis several aspects of the mechanism through which this enzyme reactswith lignin and lignosulphonate structures have been elucidated through model compoundstudies. Further studies showed that laccase alone was a highly efficient tool for increasing themolecular weight of commercial lignosulphonates at low dosages and in short incubation times.Immobilisation of the laccase to a solid support to enable re‐utilisation was also investigated.

Modification of functional group composition of lignosulphonates was achieved throughozonolysis and the Fenton’s reagent, a mixture of hydrogen peroxide and iron(II)acetate.Introduction of charged carboxylic groups was achieved through opening of the benzyl rings oflignosulphonates. It was found that a two‐stage process consisting of laccase oxidation followedby ozonolysis was an efficient technique to create a polymer enriched with carboxylic acidgroups with a sufficient molecular size.

Oxidation by the Fenton’s reagent was shown to yield similar modifications as the combinedlaccase/ozonolysis treatment albeit with less pronounced results but with a large level of controlthrough variation of a number of reaction parameters. The Fenton’s reagent can therefore be aninteresting alternative to the aforementioned two‐stage treatment.

These modifications are interesting for large‐scale applications not only because of theirsimplicity in terms of reaction parameters but also because of the ubiquity of the used enzymeand the chemicals in the pulp and paper industry.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2011. s. 55
Serie
Trita-CHE-Report, ISSN 1654-1081 ; 2011:26
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-32881 (URN)978-91-7415-923-3 (ISBN)
Disputas
2011-05-13, D3, Lindstedsvägen 3, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad
QC 20110427Tilgjengelig fra: 2011-04-27 Laget: 2011-04-26 Sist oppdatert: 2011-09-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Areskogh, DimitriLi, JiebingGellerstedt, GöranHenriksson, Gunnar
Av organisasjonen
I samme tidsskrift
Industrial crops and products (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1132 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf