Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Increased photocurrent in quantum dot infrared photodetector by subwavelength hole array in metal thin film
KTH, Skolan för bioteknologi (BIO), Teoretisk kemi.
KTH, Skolan för bioteknologi (BIO), Teoretisk kemi.
KTH, Skolan för bioteknologi (BIO), Teoretisk kemi.ORCID-id: 0000-0002-2442-1809
KTH, Skolan för informations- och kommunikationsteknik (ICT), Fotonik och optik, Fotonik.
Vise andre og tillknytning
2010 (engelsk)Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 96, nr 23, s. 231110-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Photocurrent enhancement in quantum dot (QD) infrared photodetector (QDIP) with an optical grating of subwavelength hole array in a thin metal film has been studied by calculating the transmission and diffraction of the infrared optical field through the grating and the light-matter interaction between the transmitted optical field and electrons confined in the QD. It is shown that due to the small aspect ratio of realistic QDs in QDIPs, the light diffraction due to the surface plasmon effect at the metal-semiconductor surface and the photonic subwavelength hole array structure is dominant in increasing the photocurrent.

sted, utgiver, år, opplag, sider
2010. Vol. 96, nr 23, s. 231110-
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-27515DOI: 10.1063/1.3449117ISI: 000278695900010Scopus ID: 2-s2.0-77953508938OAI: oai:DiVA.org:kth-27515DiVA, id: diva2:385432
Merknad
QC 20110111Tilgjengelig fra: 2011-01-11 Laget: 2010-12-13 Sist oppdatert: 2017-12-11bibliografisk kontrollert
Inngår i avhandling
1. Exciton-plasmon interactions in metal-semiconductor nanostructures
Åpne denne publikasjonen i ny fane eller vindu >>Exciton-plasmon interactions in metal-semiconductor nanostructures
2012 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Semiconductor quantum dots and metal nanoparticles feature very strong light-matter interactions, which has led to their use in many photonic applications such as photodetectors, biosensors, components for telecommunications etc.Under illumination both structures exhibit collective electron-photon resonances, described in the frameworks of quasiparticles as exciton-polaritons for semiconductors and surface plasmon-polaritons for metals.To date these two approaches to controlling light interactions have usually been treated separately, with just a few simple attempts to consider exciton-plasmon interactions in a system consisting of both semiconductor and metal nanostructures.In this work, the exciton-polaritons and surface \\plasmon-polaritons are first considered separately, and then combined using the Finite Difference Time Domain numerical method coupled with a master equation for the exciton-polariton population dynamics.To better understand the properties of excitons and plasmons, each quasiparticle is used to investigate two open questions - the source of the Stokes shift between the absorption and luminescence peaks in quantum dots, and the source of the photocurrent increase in quantum dot infrared photodetectors coated by a thin metal film with holes. The combined numerical method is then used to study a system consisting of multiple metal nanoparticles close to a quantum dot, a system which has been predicted to exhibit quantum dot-induced transparency, but is demonstrated to just have a weak dip in the absorption.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2012. s. viii, 50
Serie
Trita-BIO-Report, ISSN 1654-2312 ; 2012:4
Emneord
plasmons, excitons, quantum dots, nanoparticles, FDTD, surface plasmon polaritons, QDIP, quantum dot infrared photodetector, polaritons
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-93306 (URN)978-91-7501-301-5 (ISBN)
Disputas
2012-04-26, B2, Brinellvägen 23, KTH, Stockholm, 14:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Swedish e‐Science Research Center
Merknad

QC 20120417

Tilgjengelig fra: 2012-04-17 Laget: 2012-04-13 Sist oppdatert: 2013-04-09bibliografisk kontrollert
2. Light manipulation in micro and nano photonic materials and structures
Åpne denne publikasjonen i ny fane eller vindu >>Light manipulation in micro and nano photonic materials and structures
2012 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Light manipulation is an important method to enhance the light-matter interactions in micro and nano photonic materials and structures by generating usefulelectric field components and increasing time and pathways of light propagationthrough the micro and nano materials and structures. For example, quantum wellinfrared photodetector (QWIP) cannot absorb normal incident radiation so thatthe generation of an electric field component which is parallel to the original incident direction is a necessity for the function of QWIP. Furthermore, the increaseof time and pathways of light propagation in the light-absorbing quantum wellregion will increase the chance of absorbing the photons.The thesis presents the theoretical studies of light manipulation and light-matter interaction in micro and nano photonic materials and structures, aiming atimproving the performance of optical communication devices, photonic integrateddevices and photovoltaic devices.To design efficient micro and nano photonic devices, it is essential to knowthe time evolution of the electromagnetic (EM) field. Two-dimensional and three-dimensional finite-difference time-domain (FDTD) methods have been adopted inthe thesis to numerically solve the Maxwell equations in micro and nano photonicmaterials and structures.Light manipulation in micro and nano material and structures studied in thisthesis includes: (1) light transport in the photonic crystal (PhC) waveguide, (2)light diffraction by the micro-scale dielectric PhC and metallic PhC structures(gratings); and (3) exciton-polaritons of semiconductor quantum dots, (4) surfaceplasmon polaritons at semiconductor-metallic material interface for subwavelengthlight control. All these aspects are found to be useful in optical devices of multiplebeam splitter, quantum well/dot infrared photodetectors, and solar cells.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2012. s. 72
Serie
Trita-BIO-Report, ISSN 1654-2312 ; 2012:13
Emneord
Photonic crystal, quantum dot, light-matter interaction
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-94081 (URN)978-91-7501-353-4 (ISBN)
Disputas
2012-06-01, FD51, AlbaNova Universitetscentrum, Roslagstullsbacken 21, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad
QC 20120507Tilgjengelig fra: 2012-05-07 Laget: 2012-05-07 Sist oppdatert: 2012-05-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Fu, Ying

Søk i DiVA

Av forfatter/redaktør
Hellström, StaffanChen, ZhihuiFu, YingQiu, Min
Av organisasjonen
I samme tidsskrift
Applied Physics Letters

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 165 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf