Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Droplet size based separation by deterministic lateral displacement: separating droplets by cell-induced shrinking
KTH, Skolan för bioteknologi (BIO), Nanobioteknologi.ORCID-id: 0000-0001-5232-0805
KTH, Skolan för bioteknologi (BIO), Proteomik.ORCID-id: 0000-0002-4858-8056
KTH, Skolan för bioteknologi (BIO), Nanobioteknologi.
2011 (Engelska)Ingår i: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 11, nr 7, s. 1305-1310Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present a novel method for passive separation of microfluidic droplets by size at high throughput using deterministic lateral displacement (DLD). We also show that droplets containing Saccharomyces cerevisiae shrink significantly during incubation while droplets containing only yeast media retain or slightly increase their size. We demonstrate the DLD device by sorting out shrunken yeast-cell containing droplets from 31% larger diameter droplets which were generated at the same time containing only media, present at a >40-fold excess. This demonstrates the resolving power of droplet separation by DLD and establishes that droplets can be separated for a biological property of the droplet contents discriminated by a change of the physical properties of the droplet. Thus suggesting that this technique may be used for e.g. clonal selection. The same device also separates 11 µm from 30 µm droplets at a rate of 12000 droplets per second, more than twofold faster than previously demonstrated passive hydrodynamic separation devices.

Ort, förlag, år, upplaga, sidor
2011. Vol. 11, nr 7, s. 1305-1310
Nyckelord [en]
MICROFLUIDIC DEVICES, AQUEOUS DROPLET, AMPLIFICATION, EVOLUTION, SYSTEMS
Nationell ämneskategori
Industriell bioteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-30462DOI: 10.1039/c0lc00688bISI: 000288455100017PubMedID: 21321749Scopus ID: 2-s2.0-79952676399OAI: oai:DiVA.org:kth-30462DiVA, id: diva2:400228
Forskningsfinansiär
Science for Life Laboratory - a national resource center for high-throughput molecular bioscience
Anmärkning
QC 20110225Tillgänglig från: 2011-02-25 Skapad: 2011-02-25 Senast uppdaterad: 2020-01-10Bibliografiskt granskad
Ingår i avhandling
1. Droplet microfluidics for high throughput biological analysis
Öppna denna publikation i ny flik eller fönster >>Droplet microfluidics for high throughput biological analysis
2011 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Many areas of biological research increasingly perform large-scale analyses.  In genomics the entire gene repertoire of an organism is analyzed.  Proteomics attempts to understand the function and expression patterns of all proteins in a cell or organism.  Cell biologists study large numbers of single cells to understand the heterogeneity of cell populations.  In biotechnology and synthetic biology researchers search for new functional biomolecules in large libraries of biomolecular diversity e.g. for uses in medicine or bioprocessing.  More and more all of these fields employ high throughput methods to achieve the scale of analysis necessary.

Miniaturization and parallelization provide routes towards high throughput analysis, which have proven successful for microelectronics as well as for DNA sequencing.  For the analysis of cells and biomolecules, native to an aqueous environment, miniaturization and parallelization hinges on the handling and parallel processing of very small amounts of water.  Droplet microfluidics utilizes stable picoliter (water) droplets contained in inert fluorinated oils as compartments in which to isolate and analyze cells, molecules or reactions.  These droplets can be manipulated, detected and analyzed at rates of thousands per second in microfluidic modules combining top-down microscale fabrication with the self-assembly of droplets of exact size.

The studies constituting this thesis involve new droplet based biomolecular and single cell assays, manipulation techniques and device fabrication methods to extend the capabilities of droplet microfluidics for high throughput biological analysis.

The first paper in the thesis describes a novel analysis method for studying the low abundant biomarkers present on the surface individual cells at resolutions not available by flow cytometry, the current gold standard of single cell analysis.  The use of a fluorescent optical dye code enabled the analysis of several single cell samples concurrently, improving throughput.

Further a deterministic lateral displacement module, providing passive separation of droplets by size in a microfluidic circuit at more than twice higher rates than previously achievable was demonstrated.  Using this module, droplets were separated for cell occupancy based on a cell induced droplet size transformation, which couples a biological property of the droplet contents to a physical property of the droplet.  This effect, which enables passive separation of at high throughput, indicates a potential novel assay format for clone selection.

One important feature of droplets for encapsulated single cell analysis is retention of secreted molecules providing a genotype-phenotype link.  With the objective of detecting antibody molecules secreted by hybridoma for selection, Paper III demonstrates the adaption of a homogeneous fluorescence polarization based, “mix-incubate-read”, assay for antibody detection.  In the final paper of the thesis the development of inexpensive and robust optical filters monolithically integrated in the microfluidic chip is reported. These defined filters enable integration of multiple optical filters in a polymer microfluidic device.

Overall, droplet microfluidics combines techniques for handling and manipulating millions of discrete biocompatible picoliter compartments per hour with dedicated assays for biomolecule and single cell analysis. The scale of analysis that this enables is certain to impact life science research.

 

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2011. s. 90
Serie
Trita-BIO-Report, ISSN 1654-2312 ; 2011:3
Nyckelord
Microfluidics, Droplet microfluidics, High throughput biology, Single cell analysis, Hydrodynamic separation, Enzyme amplification, Fluorescence polarization, Microfabrication
Nationell ämneskategori
Industriell bioteknik
Forskningsämne
SRA - Molekylär biovetenskap
Identifikatorer
urn:nbn:se:kth:diva-30463 (URN)978-91-7415-858-8 (ISBN)
Disputation
2011-03-18, F2, Linstedtsvägen 26, KTH, Stockholm, 06:09 (Engelska)
Opponent
Handledare
Anmärkning
QC 20110225Tillgänglig från: 2011-02-25 Skapad: 2011-02-25 Senast uppdaterad: 2011-02-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Jönsson, HåkanUhlén, Mathias

Sök vidare i DiVA

Av författaren/redaktören
Jönsson, HåkanUhlén, MathiasAndersson-Svahn, Helene
Av organisationen
NanobioteknologiProteomik
I samma tidskrift
Lab on a Chip
Industriell bioteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 537 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf