kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental Study of Electromagnetic Effects on Solid Copper Jets
KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
Show others and affiliations
2010 (English)In: Journal of applied mechanics, ISSN 0021-8936, E-ISSN 1528-9036, Vol. 77, no 1, p. 011010-Article in journal (Refereed) Published
Abstract [en]

In this paper we present a study of the interaction between all electric current pulse and a solid copper jet. Experiments were performed using a dedicated pulsed power supply delivering a current pulse of such amplitude, rise little, and duration that the jet is efficiently affected. The copper jet was created by using a shaped charge warhead. All electrode configuration consisting of two aluminum plates with a separation distance of 150 mm was used. The discharge current pulse and the voltages at the capacitors and at the electrodes were measured to obtain data oil energy deposition in and the resistance of the jet and electrode contact region. X-ray diagnostics were used to radiograph the jet, and by analyzing the radiograph, the degree of disruption of the electrified jet could be obtained. It was found that a current pulse with an amplitude of 200-250 kA and a rise time of 16 mu s could strongly enhance the natural fragmentation of the jet. In this case, the initial electric energy was 100 kJ and about 90% of the electric energy was deposited in the jet and electrodes. At the exit of the electrode region, the jet fragments formed rings with a radial velocity of up to 200 m/s, depending oil the initial electric energy in the pulsed power supply. [DOI: 10.1115/1.3172251]

Place, publisher, year, edition, pages
2010. Vol. 77, no 1, p. 011010-
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-33182DOI: 10.1115/1.3172251ISI: 000271574200010Scopus ID: 2-s2.0-77955233971OAI: oai:DiVA.org:kth-33182DiVA, id: diva2:413801
Note
QC 20110429Available from: 2011-04-29 Created: 2011-04-29 Last updated: 2022-06-24Bibliographically approved
In thesis
1. Gigawatt pulsed power technologies and applications
Open this publication in new window or tab >>Gigawatt pulsed power technologies and applications
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. p. x, 85
Series
Trita-EE, ISSN 1653-5146 ; 2011:034
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-33034 (URN)978-91-7415-962-2 (ISBN)
Public defence
2011-05-20, sal F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20110502Available from: 2011-05-02 Created: 2011-04-27 Last updated: 2022-06-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Appelgren, PatrikHurtig, Tomas
By organisation
Space and Plasma Physics
In the same journal
Journal of applied mechanics
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 410 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf