Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Implementation of the entropy viscosity method
KTH, Skolan för datavetenskap och kommunikation (CSC), Numerisk analys, NA.
2011 (Engelska)Rapport (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
2011.
Serie
KTH-CTL ; 4015
Identifikatorer
URN: urn:nbn:se:kth:diva-36914OAI: oai:DiVA.org:kth-36914DiVA, id: diva2:431533
Anmärkning
QC 20110720Tillgänglig från: 2011-07-20 Skapad: 2011-07-20 Senast uppdaterad: 2011-07-21Bibliografiskt granskad
Ingår i avhandling
1. Adaptive Algorithms and High Order Stabilization for Finite Element Computation of Turbulent Compressible Flow
Öppna denna publikation i ny flik eller fönster >>Adaptive Algorithms and High Order Stabilization for Finite Element Computation of Turbulent Compressible Flow
2011 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This work develops finite element methods with high order stabilization, and robust and efficient adaptive algorithms for Large Eddy Simulation of turbulent compressible flows.

The equations are approximated by continuous piecewise linear functions in space, and the time discretization is done in implicit/explicit fashion: the second order Crank-Nicholson method and third/fourth order explicit Runge-Kutta methods. The full residual of the system and the entropy residual, are used in the construction of the stabilization terms. These methods are consistent for the exact solution, conserves all the quantities, such as mass, momentum and energy, is accurate and very simple to implement. We prove convergence of the method for scalar conservation laws in the case of an implicit scheme. The convergence analysis is based on showing that the approximation is uniformly bounded, weakly consistent with all entropy inequalities, and strongly consistent with the initial data. The convergence of the explicit schemes is tested in numerical examples in 1D, 2D and 3D.

To resolve the small scales of the flow, such as turbulence fluctuations, shocks, discontinuities and acoustic waves, the simulation needs very fine meshes. In this thesis, a robust adjoint based adaptive algorithm is developed for the time-dependent compressible Euler/Navier-Stokes equations. The adaptation is driven by the minimization of the error in quantities of interest such as stresses, drag and lift forces, or the mean value of some quantity.

The implementation and analysis are validated in computational tests, both with respect to the stabilization and the duality based adaptation.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2011. s. xii, 54
Serie
Trita-CSC-A, ISSN 1653-5723 ; 2011:13
Nyckelord
Compressible flow, adaptivity, finite element method, a posteriori error estimates, Implicit LES
Nationell ämneskategori
Beräkningsmatematik Beräkningsmatematik
Identifikatorer
urn:nbn:se:kth:diva-34532 (URN)978-91-7501-053-3 (ISBN)
Disputation
2011-09-01, F3, Entre plan,, Lindstedtsvägen 26, KTH, Stockholm, 17:58 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet
Anmärkning
QC 20110627Tillgänglig från: 2011-06-27 Skapad: 2011-06-09 Senast uppdaterad: 2011-07-21Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Sök vidare i DiVA

Av författaren/redaktören
Nazarov, Murtazo
Av organisationen
Numerisk analys, NA

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 289 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf