CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt169",{id:"formSmash:upper:j_idt169",widgetVar:"widget_formSmash_upper_j_idt169",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt175_j_idt177",{id:"formSmash:upper:j_idt175:j_idt177",widgetVar:"widget_formSmash_upper_j_idt175_j_idt177",target:"formSmash:upper:j_idt175:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Generalized interpolation in H-infinity with a complexity constraintPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2006 (English)In: Transactions of the American Mathematical Society, ISSN 0002-9947, E-ISSN 1088-6850, Vol. 358, no 3, p. 965-987Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2006. Vol. 358, no 3, p. 965-987
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-37450DOI: 10.1090/S0002-9947-04-03616-5ISI: 000234197400002OAI: oai:DiVA.org:kth-37450DiVA, id: diva2:433900
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt721",{id:"formSmash:j_idt721",widgetVar:"widget_formSmash_j_idt721",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt727",{id:"formSmash:j_idt727",widgetVar:"widget_formSmash_j_idt727",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt748",{id:"formSmash:j_idt748",widgetVar:"widget_formSmash_j_idt748",multiple:true}); Available from: 2011-08-11 Created: 2011-08-11 Last updated: 2017-12-08Bibliographically approved

In a seminal paper, Sarason generalized some classical interpolation problems for H-infinity functions on the unit disc to problems concerning lifting onto H-2 of an operator T that is defined on K=H-2 circle minus phi H-2 (phi is an inner function) and commutes with the (compressed) shift S. In particular, he showed that interpolants (i.e., f is an element of H-infinity such that f(S)=T) having norm equal to parallel to T parallel to exist, and that in certain cases such an f is unique and can be expressed as a fraction f=b/a with a, b is an element of K. In this paper, we study interpolants that are such fractions of K functions and are bounded in norm by 1 (assuming that parallel to T parallel to<1, in which case they always exist). We parameterize the collection of all such pairs (a, b)is an element of K x K and show that each interpolant of this type can be determined as the unique minimum of a convex functional. Our motivation stems from the relevance of classical interpolation to circuit theory, systems theory, and signal processing, where phi is typically a finite Blaschke product, and where the quotient representation is a physically meaningful complexity constraint.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1844",{id:"formSmash:j_idt1844",widgetVar:"widget_formSmash_j_idt1844",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1897",{id:"formSmash:lower:j_idt1897",widgetVar:"widget_formSmash_lower_j_idt1897",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1898_j_idt1900",{id:"formSmash:lower:j_idt1898:j_idt1900",widgetVar:"widget_formSmash_lower_j_idt1898_j_idt1900",target:"formSmash:lower:j_idt1898:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});