Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning Tactile Characterizations Of Object- And Pose-specific Grasps
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.ORCID-id: 0000-0003-2965-2953
2011 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Our aim is to predict the stability of a grasp from the perceptions available to a robot before attempting to lift up and transport an object. The percepts we consider consist of the tactile imprints and the object-gripper configuration read before and until the robot’s manipulator is fully closed around an object. Our robot is equipped with multiple tactile sensing arrays and it is able to track the pose of an object during the application of a grasp. We present a kernel-logistic-regression model of pose- and touch-conditional grasp success probability which we train on grasp data collected by letting the robot experience the effect on tactile and visual signals of grasps suggested by a teacher, and letting the robot verify which grasps can be used to rigidly control the object. We consider models defined on several subspaces of our input data – e.g., using tactile perceptions or pose information only. Our experiment demonstrates that joint tactile and pose-based perceptions carry valuable grasp-related information, as models trained on both hand poses and tactile parameters perform better than the models trained exclusively on one perceptual input.

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2011. s. 1554-1560
Serie
IEEE International Conference on Intelligent Robots and Systems, ISSN 2153-0858
Emneord [en]
Grasping, Kernel Logistic Regression, Tactile Sensing
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-38280DOI: 10.1109/IROS.2011.6094878ISI: 000297477501137Scopus ID: 2-s2.0-84455203892ISBN: 978-1-61284-454-1 (tryckt)OAI: oai:DiVA.org:kth-38280DiVA, id: diva2:436513
Konferanse
IEEE/RSJ International Conference on Intelligent Robots and Systems
Prosjekter
EU FP7 project CogX
Forskningsfinansiär
ICT - The Next Generation
Merknad
QC 20120403Tilgjengelig fra: 2011-08-23 Laget: 2011-08-23 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopusIEEEXplore

Personposter BETA

Kragic, Danica

Søk i DiVA

Av forfatter/redaktør
Bekiroglu, YaseminDetry, RenaudKragic, Danica
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 351 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf