Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Generic Object Class Detection using Feature Maps
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
2011 (engelsk)Inngår i: Proceedings of Scandinavian Conference on Image Analysis, 2011, s. 348-359Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In this paper we describe an object class model and a detection scheme based on feature maps, i.e. binary images indicating occurrences of various local features. Any type of local feature and any number of features can be used to generate feature maps. The choice of which features to use can thus be adapted to the task at hand, without changing the general framework. An object class is represented by a boosted decision tree classifier (which may be cascaded) based on normalized distances to feature occurrences. The resulting object class model is essentially a linear combination of a set of flexible configurations of the features used. Within this framework we present an efficient detection scheme that uses a hierarchical search strategy. We demonstrate experimentally that this detection scheme yields a significant speedup compared to sliding window search. We evaluate the detection performance on a standard dataset [7], showing state of the art results. Features used in this paper include edges, corners, blobs and interest points.

sted, utgiver, år, opplag, sider
2011. s. 348-359
Serie
Lecture Notes in Computer Science, ISSN 0302-9743 ; 6688
Emneord [en]
AdaBoost, decision tree, detector, distance transform, SIFT
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-38596DOI: 10.1007/978-3-642-21227-7_33ISI: 000308543900033Scopus ID: 2-s2.0-79957517130ISBN: 978-364221226-0 (tryckt)OAI: oai:DiVA.org:kth-38596DiVA, id: diva2:437457
Konferanse
17th Scandinavian Conference on Image Analysis, SCIA 2011; Ystad; 23 May 2011 through 27 May 2011
Forskningsfinansiär
ICT - The Next Generation
Merknad

QC 20110830

Tilgjengelig fra: 2011-08-29 Laget: 2011-08-29 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Danielsson, OscarCarlsson, Stefan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 58 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf