Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Biocompatible "click" wafer bonding for microfluidic devices
KTH, Skolan för elektro- och systemteknik (EES), Mikrosystemteknik (Bytt namn 20121201).
KTH, Skolan för elektro- och systemteknik (EES), Mikrosystemteknik (Bytt namn 20121201).
KTH, Skolan för elektro- och systemteknik (EES), Mikrosystemteknik (Bytt namn 20121201).
KTH, Skolan för elektro- och systemteknik (EES), Mikrosystemteknik (Bytt namn 20121201).ORCID-id: 0000-0001-8248-6670
2012 (Engelska)Ingår i: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 12, nr 17, s. 3032-3035Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We introduce a novel dry wafer bonding concept designed for permanent attachment of micromolded polymer structures to surface functionalized silicon substrates. The method, designed for simultaneous fabrication of many lab-on-chip devices, utilizes a chemically reactive polymer microfluidic structure, which rapidly bonds to a functionalized substrate via "click" chemistry reactions. The microfluidic structure consists of an off-stoichiometry thiol-ene (OSTE) polymer with a very high density of surface bound thiol groups and the substrate is a silicon wafer that has been functionalized with common bio-linker molecules. We demonstrate here void free, and low temperature (<37 degrees C) bonding of a batch of OSTE microfluidic layers to a silane functionalized silicon wafer.

Ort, förlag, år, upplaga, sidor
RSC Publishing, 2012. Vol. 12, nr 17, s. 3032-3035
Nyckelord [en]
Adhesive, wafer bonding, heterogeneous integration, OSTE
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:kth:diva-38608DOI: 10.1039/c2lc21098cISI: 000307066400008Scopus ID: 2-s2.0-84864674588OAI: oai:DiVA.org:kth-38608DiVA, id: diva2:437754
Forskningsfinansiär
EU, Europeiska forskningsrådet
Anmärkning

QC 20120903. Updated from submitted to published.

Tillgänglig från: 2011-08-30 Skapad: 2011-08-30 Senast uppdaterad: 2017-08-15Bibliografiskt granskad
Ingår i avhandling
1. Development of materials, surfaces and manufacturing methods for microfluidic applications
Öppna denna publikation i ny flik eller fönster >>Development of materials, surfaces and manufacturing methods for microfluidic applications
2011 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis presents technological advancements in microfluidics. The overall goals of the work are to develop new miniaturized tests for point-of-care diagnostics and robust super-lubricating surfaces for friction reduction. To achieve these goals, novel materials, surfaces and manufacturing methods in microfluidics have been developed.

Point-of-care diagnostic tests are portable miniaturized instruments that downscale and automate medical tests previously performed in the central laboratories of hospitals. The instruments are used in the doctor’s office, in the emergency room or at home as self-tests. By bringing the analysis closer to the patient, the likelihood of an accurate diagnosis, or a quick therapy adjustment is increased. Already today, there are point-of-care tests available on the market, for example blood glucose tests, rapid streptococcus tests and pregnancy tests. However, for more advanced diagnostic tests, such as DNA-tests or antibody analysis, integration of microfluidic functions for mass transport and sample preparation is required. The problem is that the polymer materials used in academic development are not always suited for prototyping microfluidic components for sensitive biosensors. Despite the enormous work that has gone into the field, very few technical solutions have been implemented commercially.

The first part of the work deals with the development of prototype point of-care tests. The research has focused on two major areas: developing new manufacturing methods to leverage the performance of existing materials and developing a novel polymer material platform, adapted for the extreme demands on surfaces and materials in miniaturized laboratories. The novel manufacturing methods allow complex 3D channel networks and the integration of materials with different surface properties. The novel material platform is based on a novel off-stoichiometry formulation of thiol-enes (OSTE) and has very attractive material and manufacturing properties from a lab-on-chip perspective, such as, chemically stable surfaces, low absorption of small molecules, facile and inexpensive manufacturing process and a biocompatible bonding method. As the OSTE-platform can mirror many of the properties of commercially used polymers, while at the same time having an inexpensive and facile manufacturing method, it has potential to bridge the gap between research and commercial production.

Friction in liquid flows is a critical limiting factor in microfluidics, where friction is the dominant force, but also in marine applications where frictional losses are responsible for a large part of the total energy consumption of sea vessels. Microstructured surfaces can drastically reduce the frictional losses by trapping a layer of air bubbles on the surface that can act as an air bearing for the liquid flow. The problem is that these trapped air bubbles collapse at the liquid pressures encountered in practical applications.

The last part of the thesis is devoted to the development of novel low fluidfriction surfaces with increased robustness but also with active control of the surface friction. The results show that the novel surfaces can resist up to three times higher liquid pressure than previous designs, while keeping the same friction reducing capacity. The novel designs represent the first step towards practical implementation of micro-structured surfaces for friction reduction.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2011. s. xiii, 87
Serie
Trita-EE, ISSN 1653-5146 ; 2011:058
Nyckelord
microsystem technology, MEMS, microfluidics, polymers, off-stoichiometry thiol-ene, point-of-care, lab-on-chip
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
urn:nbn:se:kth:diva-38605 (URN)978-91-7501-086-1 (ISBN)
Disputation
2011-09-23, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20110907

Tillgänglig från: 2011-09-02 Skapad: 2011-08-30 Senast uppdaterad: 2012-09-03Bibliografiskt granskad

Open Access i DiVA

fulltext(538 kB)258 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 538 kBChecksumma SHA-512
3bd4baadd7d2189c2b06fc2a035381c24289192fc7e8a739057bb5e5005e2c3f8419e4eca61548f2c96774b8f9f1dafa83bf57dcc77307c75523df868ae54065
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopusPublisher's website

Personposter BETA

van der Wijngaart, Wouter

Sök vidare i DiVA

Av författaren/redaktören
Saharil, FarizahCarlborg, Carl FredrikHaraldsson, Tommyvan der Wijngaart, Wouter
Av organisationen
Mikrosystemteknik (Bytt namn 20121201)
I samma tidskrift
Lab on a Chip
Annan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 258 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 822 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf