Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessing Grasp Stability Based on Learning and Haptic Data
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
Department of Information Technology, Lappeenranta University of Technology, Finland.
The Maersk Mc-Kinney Moller Institute University of Southern Denmark, Denmark.
the Department of Information Technology, Lappeenranta University of Technology, Finland.
Vise andre og tillknytning
2011 (engelsk)Inngår i: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 27, nr 3, s. 616-629Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

An important ability of a robot that interacts with the environment and manipulates objects is to deal with the uncertainty in sensory data. Sensory information is necessary to, for example, perform online assessment of grasp stability. We present methods to assess grasp stability based on haptic data and machinelearning methods, including AdaBoost, support vector machines (SVMs), and hidden Markov models (HMMs). In particular, we study the effect of different sensory streams to grasp stability. This includes object information such as shape; grasp information such as approach vector; tactile measurements fromfingertips; and joint configuration of the hand. Sensory knowledge affects the success of the grasping process both in the planning stage (before a grasp is executed) and during the execution of the grasp (closed-loop online control). In this paper, we study both of these aspects. We propose a probabilistic learning framework to assess grasp stability and demonstrate that knowledge about grasp stability can be inferred using information from tactile sensors. Experiments on both simulated and real data are shown. The results indicate that the idea to exploit the learning approach is applicable in realistic scenarios, which opens a number of interesting venues for the future research.

sted, utgiver, år, opplag, sider
IEEE Robotics and Automation Society, 2011. Vol. 27, nr 3, s. 616-629
Emneord [en]
Force and tactile sensing, grasping, learning and adaptive systems, Hidden Markov models, Stability analysis, Support vector machines, Tactile sensors
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-39069DOI: 10.1109/TRO.2011.2132870ISI: 000291404600020Scopus ID: 2-s2.0-79958770754OAI: oai:DiVA.org:kth-39069DiVA, id: diva2:439419
Prosjekter
EU FP7 project CogX
Forskningsfinansiär
ICT - The Next Generation
Merknad
QC 20110907Tilgjengelig fra: 2011-09-07 Laget: 2011-09-07 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopusIEEEXplore

Personposter BETA

Kragic, Danica

Søk i DiVA

Av forfatter/redaktør
Bekiroglu, YaseminKragic, Danica
Av organisasjonen
I samme tidsskrift
IEEE Transactions on robotics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 392 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf