Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gaussian mixture modeling for source localization
KTH, Skolan för elektro- och systemteknik (EES), Signalbehandling. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0001-6630-243X
KTH, Skolan för elektro- och systemteknik (EES), Signalbehandling. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0003-2638-6047
2011 (engelsk)Inngår i: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2011, s. 2604-2607Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Exploiting prior knowledge, we use Bayesian estimation to localize a source heard by a fixed sensor network. The method has two main aspects: Firstly, the probability density function (PDF) of a function of the source location is approximated by a Gaussian mixture model (GMM). This approximation can theoretically be made arbitrarily accurate, and allows a closed form minimum mean square error (MMSE) estimator for that function. Secondly, the source location is retrieved by minimizing the Euclidean distance between the function and its MMSE estimate using a gradient method. Our method avoids the issues of a numerical MMSE estimator but shows comparable accuracy.

sted, utgiver, år, opplag, sider
2011. s. 2604-2607
Serie
IEEE International Conference on Acoustics, Speech and Signal Processing. Proceedings, ISSN 1520-6149
Emneord [en]
Bayesian estimations, Closed form, Euclidean distance, Gaussian Mixture Model, Gaussian mixture modeling, Localization, Minimum mean-square error estimators, Prior knowledge, Probability density function (pdf), Source localization, Source location, Bayesian networks, Communication channels (information theory), Estimation, Gaussian distribution, Gradient methods, Image segmentation, Knowledge based systems, Numerical methods, Object recognition, Sensor networks, Sensors, Signal processing, Speech communication
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-46325DOI: 10.1109/ICASSP.2011.5947018Scopus ID: 2-s2.0-80051607561ISBN: 978-1-4577-0538-0 (tryckt)ISBN: 978-1-4577-0537-3 (tryckt)OAI: oai:DiVA.org:kth-46325DiVA, id: diva2:453654
Konferanse
36th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011; Prague; 22 May 2011 through 27 May 2011
Merknad
QC 20111115Tilgjengelig fra: 2011-11-03 Laget: 2011-11-03 Sist oppdatert: 2012-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Jaldén, JoakimChatterjee, Saikat

Søk i DiVA

Av forfatter/redaktør
Jaldén, JoakimChatterjee, Saikat
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 96 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf