Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Enhanced Visual Scene Understanding through Human-Robot Dialog
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH.ORCID-id: 0000-0002-8579-1790
KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH.ORCID-id: 0000-0002-0397-6442
Vise andre og tillknytning
2011 (engelsk)Inngår i: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE , 2011, s. 3342-3348Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We propose a novel human-robot-interaction framework for robust visual scene understanding. Without any a-priori knowledge about the objects, the task of the robot is to correctly enumerate how many of them are in the scene and segment them from the background. Our approach builds on top of state-of-the-art computer vision methods, generating object hypotheses through segmentation. This process is combined with a natural dialog system, thus including a ‘human in the loop’ where, by exploiting the natural conversation of an advanced dialog system, the robot gains knowledge about ambiguous situations. We present an entropy-based system allowing the robot to detect the poorest object hypotheses and query the user for arbitration. Based on the information obtained from the human-robot dialog, the scene segmentation can be re-seeded and thereby improved. We present experimental results on real data that show an improved segmentation performance compared to segmentation without interaction.

sted, utgiver, år, opplag, sider
IEEE , 2011. s. 3342-3348
Serie
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, ISSN 2153-0858
Emneord [en]
Service Robotics, Human-Robot Dialog, Machine Learning, Segmentation
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-46701DOI: 10.1109/IROS.2011.6048219ISI: 000297477503104Scopus ID: 2-s2.0-84455206614ISBN: 978-1-61284-454-1 (tryckt)OAI: oai:DiVA.org:kth-46701DiVA, id: diva2:453961
Konferanse
International Conference on Intelligent Robots and Systems (IROS '11). San Francisco, CA, USA. 25 Sep - 30 Sep 2011
Prosjekter
SavirGrasp
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, IST-FP7- IP-215821ICT - The Next Generation
Merknad
QC 20111118Tilgjengelig fra: 2011-11-04 Laget: 2011-11-04 Sist oppdatert: 2012-04-03bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopusIEEExplore

Personposter BETA

Skantze, GabrielGustafsson, JoakimKragic, Danica

Søk i DiVA

Av forfatter/redaktør
Johnson-Roberson, MatthewBohg, JeannetteSkantze, GabrielGustafsson, JoakimCarlson, RolfKragic, DanicaRasolzadeh, Babak
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 105 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf