kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Towards minimal perturbations in transitional plane Couette flow
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-4346-4732
2010 (English)In: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, ISSN 1539-3755, E-ISSN 1550-2376, Vol. 82, no 2, p. 026316-Article in journal (Refereed) Published
Abstract [en]

For parallel shear flows, transition to turbulence occurs only for perturbations of sufficiently large amplitude. It is therefore relevant to study the shape, amplitude, and dynamics of the least energetic initial disturbances leading to transition. We suggest a numerical approach to find such minimal perturbations, applied here to the case of plane Couette flow. The optimization method seeks such perturbations at initial time as a linear combination of a finite number of linear optimal modes. The energy threshold of the minimal perturbation for a Reynolds number Re=400 is only 2% less than for a pair of symmetric oblique waves. The associated transition scenario shows a long transient approach to a steady state solution with special symmetries. Modal analysis shows how the oblique-wave mechanism can be optimized by the addition of other oblique modes breaking the flow symmetry and whose nonlinear interaction generates spectral components of the edge state. The Re dependence of energy thresholds is revisited, with evidence for a O(Re(-2))-scaling for both oblique waves and streamwise vortices scenarios.

Place, publisher, year, edition, pages
2010. Vol. 82, no 2, p. 026316-
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:kth:diva-46630DOI: 10.1103/PhysRevE.82.026316ISI: 000281228700003PubMedID: 20866914Scopus ID: 2-s2.0-77956106395OAI: oai:DiVA.org:kth-46630DiVA, id: diva2:455137
Note
QC 20111108Available from: 2011-11-08 Created: 2011-11-04 Last updated: 2022-06-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Brandt, Luca

Search in DiVA

By author/editor
Duguet, YohannBrandt, Luca
By organisation
MechanicsLinné Flow Center, FLOW
In the same journal
Physical Review E. Statistical, Nonlinear, and Soft Matter Physics
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 79 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf