Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Clustering by a genetic algorithm with biased mutation operator
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsbiologi, CB. (Anders Lansner)
2010 (Engelska)Ingår i: 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), IEEE , 2010, s. 1-8Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In this paper we propose a genetic al- gorithm that partitions data into a given number of clusters. The algorithm can use any cluster validity function as fitness function. Cluster validity is used as a criterion for cross-over operations. The cluster assignment for each point is accompanied by a tem- perature and points with low confidence are pref- erentially mutated. We present results applying this genetic algorithm to several UCI machine learning data sets and using several objective cluster validity functions for optimization. It is shown that given an appropriate criterion function, the algorithm is able to converge on good cluster partitions within few generations. Our main contributions are: 1. to present a genetic algorithm that is fast and able to converge on meaningful clusters for real-world data sets, 2. to define and compare several cluster validity criteria. 

Ort, förlag, år, upplaga, sidor
IEEE , 2010. s. 1-8
Nyckelord [en]
learning (artificial intelligence), pattern clustering, UCI machine learning, cluster validity function, criterion function, crossover operation, fitness function, genetic algorithm, mutation operator, optimization
Nationell ämneskategori
Signalbehandling
Forskningsämne
SRA - Informations- och kommunikationsteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-48065DOI: 10.1109/CEC.2010.5586090ISI: 000287375801062OAI: oai:DiVA.org:kth-48065DiVA, id: diva2:456742
Konferens
2010 IEEE World Congress on Computational Intelligence. Barcelona, SPAIN. JUL 18-23, 2010
Anmärkning
© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. QC 20111115Tillgänglig från: 2012-02-20 Skapad: 2011-11-15 Senast uppdaterad: 2012-03-12Bibliografiskt granskad
Ingår i avhandling
1. Machine Learning Techniques with Specific Application to the Early Olfactory System
Öppna denna publikation i ny flik eller fönster >>Machine Learning Techniques with Specific Application to the Early Olfactory System
2012 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis deals with machine learning techniques for the extraction of structure and the analysis of the vertebrate olfactory pathway based on related methods. Some of its main contributions are summarized below.

We have performed a systematic investigation for classification in biomedical images with the goal of recognizing a material in these images by its texture. This investigation included (i) different measures for evaluating the importance of image descriptors (features), (ii) methods to select a feature set based on these evaluations, and (iii) classification algorithms. Image features were evaluated according to their estimated relevance for the classification task and their redundancy with other features. For this purpose, we proposed a framework for relevance and redundancy measures and, within this framework, we proposed two new measures. These were the value difference metric and the fit criterion. Both measures performed well in comparison with other previously used ones for evaluating features. We also proposed a Hopfield network as a method for feature selection, which in experiments gave one of the best results relative to other previously used approaches.

We proposed a genetic algorithm for clustering and tested it on several realworld datasets. This genetic algorithm was novel in several ways, including (i) the use of intra-cluster distance as additional optimization criterion, (ii) an annealing procedure, and (iii) adaptation of mutation rates. As opposed to many conventional clustering algorithms, our optimization framework allowed us to use different cluster validation measures including those which do not rely on cluster centroids. We demonstrated the use of the clustering algorithm experimentally with several cluster validity measures as optimization criteria. We compared the performance of our clustering algorithm to that of the often-used fuzzy c-means algorithm on several standard machine learning datasets from the University of California/Urvine (UCI) and obtained good results.

The organization of representations in the brain has been observed at several stages of processing to spatially decompose input from the environment into features that are somehow relevant from a behavioral or perceptual standpoint. For the perception of smells, the analysis of such an organization, however, is not as straightforward because of the missing metric. Some studies report spatial clusters for several combinations of physico-chemical properties in the olfactory bulb at the level of the glomeruli. We performed a systematic study of representations based on a dataset of activity-related images comprising more than 350 odorants and covering the whole spatial array of the first synaptic level in the olfactory system. We found clustered representations for several physico-chemical properties. We compared the relevance of these properties to activations and estimated the size of the coding zones. The results confirmed and extended previous studies on olfactory coding for physico-chemical properties. Particularly of interest was the spatial progression by carbon chain that we found. We discussed our estimates of relevance and coding size in the context of processing strategies. We think that the results obtained in this study could guide the search into olfactory coding primitives and the understanding of the stimulus space.

In a second study on representations in the olfactory bulb, we grouped odorants together by perceptual categories, such as floral and fruity. By the application of the same statistical methods as in the previous study, we found clustered zones for these categories. Furthermore, we found that distances between spatial representations were related to perceptual differences in humans as reported in the literature. This was possibly the first time that such an analysis had been done. Apart from pointing towards a spatial decomposition by perceptual dimensions, results indicate that distance relationships between representations could be perceptually meaningful.

In a third study, we modeled axon convergence from olfactory receptor neurons to the olfactory bulb. Sensory neurons were stimulated by a set of biologically-relevant odors, which were described by a set of physico-chemical properties that covaried with the neural and glomerular population activity in the olfactory bulb. Convergence was mediated by the covariance between olfactory neurons. In our model, we could replicate the formation of glomeruli and concentration coding as reported in the literature, and further, we found that the spatial relationships between representational zones resulting from our model correlated with reported perceptual differences between odor categories. This shows that natural statistics, including similarity of physico-chemical structure of odorants, can give rise to an ordered arrangement of representations at the olfactory bulb level where the distances between representations are perceptually relevant.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2012. s. xiv, 216
Serie
Trita-CSC-A, ISSN 1653-5723 ; 2012:01
Nyckelord
feature selection, image features, pattern classification, relevance, redundancy, distributional similarity, divergence measure, genetic algorithms, clustering algorithms, annealing, olfactory coding, olfactory bulb, odorants, glomeruli, property-activity relationship, olfaction, plasticity, axonal guidance, odor category, perception, spatial coding, population coding, memory organization, odor quality
Nationell ämneskategori
Biologiska vetenskaper
Forskningsämne
SRA - Informations- och kommunikationsteknik
Identifikatorer
urn:nbn:se:kth:diva-90474 (URN)978-91-7501-273-5 (ISBN)
Disputation
2012-03-16, D3, Lindstedtsvägen 5, KTH, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Swedish e‐Science Research Center
Anmärkning

QC 20120224

Tillgänglig från: 2012-02-24 Skapad: 2012-02-24 Senast uppdaterad: 2013-04-09Bibliografiskt granskad

Open Access i DiVA

fulltext(274 kB)1888 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 274 kBChecksumma SHA-512
b83a054b74b9af49139cba9b04dc449c58f475f46ead7a17b68acf8f79a67680635fb20db45f9b9d0f24df5e58dfdde5166317d906424f03219bfcc804c5aa94
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextieee fulltext

Sök vidare i DiVA

Av författaren/redaktören
Auffarth, Benjamin
Av organisationen
Beräkningsbiologi, CB
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1902 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 451 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf