Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gaussian process latent variable models for human pose estimation
2007 (engelsk)Inngår i: MACHINE LEARNING FOR MULTIMODAL INTERACTION / [ed] Belis, AP; Renals, S; Bourlard, H, 2007, s. 132-143Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We describe a method for recovering 3D human body pose from silhouettes. Our model is based on learning a latent space using the Gaussian Process Latent Variable Model (GP-LVM) [1] encapsulating both pose and silhouette features Our method is generative, this allows us to model the ambiguities of a silhouette representation in a principled way. We learn a dynamical model over the latent space which allows us to disambiguate between ambiguous silhouettes by temporal consistency. The model has only two free parameters and has several advantages over both regression approaches and other generative methods. In addition to the application shown in this paper the suggested model is easily extended to multiple observation spaces without constraints on type.

sted, utgiver, år, opplag, sider
2007. s. 132-143
Serie
Lecture Notes in Computer Science, ISSN 0302-9743
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-50657ISI: 000253834900012OAI: oai:DiVA.org:kth-50657DiVA, id: diva2:462376
Konferanse
4th International Workshop on Machine Learning for Multimodal Interaction. Brno, CZECH REPUBLIC. JUN 28-30, 2007
Merknad
QC 20111208Tilgjengelig fra: 2011-12-07 Laget: 2011-12-07 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk i DiVA

Av forfatter/redaktør
Ek, Carl Henrik

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 271 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf