Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multi-Target Tracking -- Linking Identities using Bayesian Network Inference
Institute of Computer Science - FORTH.ORCID-id: 0000-0002-7725-0548
KTH, Skolan för datavetenskap och kommunikation (CSC), Numerisk Analys och Datalogi, NADA.
KTH, Skolan för datavetenskap och kommunikation (CSC), Numerisk Analys och Datalogi, NADA.
2006 (engelsk)Inngår i: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA, USA: IEEE Computer Society, 2006, s. 2187-2194Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Multi-target tracking requires locating the targets and labeling their identities. The latter is a challenge when many targets, with indistinct appearances, frequently occlude one another, as in football and surveillance tracking. We present an approach to solving this labeling problem.

When isolated, a target can be tracked and its identity maintained. While, if targets interact this is not always the case. This paper assumes a track graph exists, denoting when targets are isolated and describing how they interact. Measures of similarity between isolated tracks are defined. The goal is to associate the identities of the isolated tracks, by exploiting the graph constraints and similarity measures.

We formulate this as a Bayesian network inference problem, allowing us to use standard message propagation to find the most probable set of paths in an efficient way. The high complexity inevitable in large problems is gracefully reduced by removing dependency links between tracks. We apply the method to a 10 min sequence of an international football game and compare results to ground truth.

sted, utgiver, år, opplag, sider
Los Alamitos, CA, USA: IEEE Computer Society, 2006. s. 2187-2194
Emneord [en]
computer vision, multi-target tracking
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-51095DOI: 10.1109/CVPR.2006.198Scopus ID: 2-s2.0-33845575115ISBN: 0-7695-2597-0 (tryckt)OAI: oai:DiVA.org:kth-51095DiVA, id: diva2:463428
Konferanse
2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006. New York, NY. 17 June 2006 - 22 June 2006
Merknad
QC 20111212Tilgjengelig fra: 2011-12-09 Laget: 2011-12-09 Sist oppdatert: 2012-01-19bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Nillius, Peter

Søk i DiVA

Av forfatter/redaktør
Nillius, PeterSullivan, JosephineCarlsson, Stefan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 50 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf