Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
CFD Modeling of Air Pocket Transport in Conjunction with Spillway Conduits
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Mark- och vattenteknik, Vattendragsteknik.
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Mark- och vattenteknik, Vattendragsteknik.
2011 (Engelska)Ingår i: 11th International Conferenceon Fluid Control, Measutements and Visualization, Keeling, Taiwan, December 2-9 2011, 2011Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper focuses on simulations of enclosed air pocket movements in conjunction with bottom outlet operations. The critical velocity of water for air pocket transport in pipe is the minimal flow velocity for the air pocket start to move downstream. A numerical model is developed to simulate the critical velocity of air pocket transport in pipe flow and to discuss the impacts of tunnel slope, size of the air pocket and wall roughness. The computations are performed in FLUENT using Volume of Fraction (VOF) model combined with k-epsilon model. Parallel computing is adopted for high computational performance.

The modeled critical velocity is compared with experimental results and they increase with increasing slopes. However, as the roughness height defined in the model is not big enough to represent the reality and no wall shear stress is applied in the upper wall where air pocket and wall contact, the modeled critical velocity is smaller than the experimental ones. Therefore, wall roughness contributes to keep the air pocket from moving downstream which is important in modeling critical velocity. However, by assuming a constant wall shear stress for the air phase the same as the water phase will overestimate the shear stress on the air pocket.

Two air pocket volumes are simulated at the slope 0.8 degrees which shows the bigger the air pocket is the higher the critical velocity is. Modeling results also show that the critical velocity is non-zero in horizontal pipe and there is a limit for the carrying capacity at all slopes. The simulations of air pockets with different volumes in the bottom tunnel of Letten dam in North of Sweden is shown in this paper as well.

Ort, förlag, år, upplaga, sidor
2011.
Nationell ämneskategori
Vattenteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-52306OAI: oai:DiVA.org:kth-52306DiVA, id: diva2:465886
Anmärkning
QC 20111215Tillgänglig från: 2011-12-15 Skapad: 2011-12-15 Senast uppdaterad: 2012-01-10Bibliografiskt granskad
Ingår i avhandling
1. Air-pocket transport in conjunction with bottom-outlet conduits for dams
Öppna denna publikation i ny flik eller fönster >>Air-pocket transport in conjunction with bottom-outlet conduits for dams
2011 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Undesired air entrainment in bottom outlet conduits of dams may cause pressure transients, leading to conduit vibrations, blowback, discharge pulsation and even cavitation, and jeopardize the operational safety. Due to design limitations or construction costs, it is impossible to create an air free environment in a pressurized pipe. Therefore, it is essential to understand the air transport in enclosed pipes in order to provide guidance in bottom outlet design and operation. The commonly used criterion of the air-pocket movement in pipe flow is the water flow velocity for starting moving an air pocket, the so-called critical velocity.

In this thesis, the classical Volume of Fluid (VOF) model combined with the k-ε turbulence model is adopted for the computation of the critical velocity of a 150-mm pipe. The computed critical velocities are compared with the experimental results. The governing parameters investigated in this study include pipe slope and diameter, wall shear stress and air-pocket volume. Meanwhile, the carrying capacity (air-pocket velocity/ flow velocity) at all pipe slopes are analyzed. The simulation results of air pockets with different volumes in the bottom outlet conduit of Letten Dam in Sweden are presented in this study.

Moreover, experimental study was conducted to measure the critical velocity for a 240-mm Plexiglas pipe. The results are in agreement with the experiments performed by HR Wallingford (HRW) in 2003 in terms of the effects of pipe slope and air-pocket volume; however, the critical Froude pipe number is slightly smaller in this study. In rough pipes, a larger critical velocity is required compared with that in the smooth pipe. The removal mechanism in the rough pipe involves the successive loss of air caused by turbulence. This explains that the air-pocket size, with the dimensionless air-pocket volume n < 0.015, has little impact on the critical velocity for the rough pipe. In addition, roughness has little impact on the air-pocket velocity when it moves upstream in the downward inclined pipe. The trapped air bubbles most likely remain permanently in the rough pipe.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2011. s. x, 25
Serie
Trita-LWR. LIC, ISSN 1650-8629 ; 2062
Nyckelord
Air-water two-phase flow, critical velocity, diameter effect, roughness, VOF model, bottom outlet, experiment
Nationell ämneskategori
Strömningsmekanik och akustik Geoteknik
Identifikatorer
urn:nbn:se:kth:diva-52727 (URN)KTH/LWR/LIC 2062-SE (ISRN)978-91-7501-213-1 (ISBN)
Presentation
2012-01-19, V3, Teknikringen 72, KTH, Stockholm, 10:30 (Engelska)
Opponent
Handledare
Anmärkning
QC 20120110Tillgänglig från: 2012-01-10 Skapad: 2011-12-19 Senast uppdaterad: 2012-01-10Bibliografiskt granskad

Open Access i DiVA

fulltext(411 kB)824 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 411 kBChecksumma SHA-512
52e5770cd467b89f761b4ce2d052f2481901ac6e7dad9194af4d7d6b6a911ef3dda412139ae918b6e4d9de86cd2ef0894e5ca389992efacfff1a07fa71c9c86e
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Liu, TingYang, James
Av organisationen
Vattendragsteknik
Vattenteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 824 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 446 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf