Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Receding Horizon Control of UAVs using Gradual Dense-Sparse Discretizations
Swedish Defence Research Agency (FOI), Department of Aeronautics and Systems Technology,.ORCID-id: 0000-0002-7714-928X
Swedish Defence Research Agency (FOI), Department of Aeronautics .
2010 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In this paper we propose a way of increasing the eciency of some direct Receding Horizon Control (RHC) schemes. The basic idea is to adapt the allocation of compu- tational resources to how the iterative plans are used. By using Gradual Dense-Sparse discretizations (GDS), we make sure that the plans are detailed where they need to be, i.e., in the very near future, and less detailed further ahead. The gradual transition in discretization density re ects increased uncertainty and reduced need for detail near the end of the planning horizon. The proposed extension is natural, since the standard RHC approach already contains a computational asymmetry in terms of the coarse cost-to-go computations and the more detailed short horizon plans. Using GDS discretizations, we bring this asymmetry one step further, and let the short horizon plans themselves be detailed in the near term and more coarse in the long term. The rationale for dierent levels of detail is as follows. 1) Near future plans need to be implemented soon, while far future plans can be rened or revised later. 2) More accurate sensor information is available about the system and its surroundings in the near future, and detailed planning is only rational in low uncertainty situations. 3) It has been shown that reducing the node density in the later parts of xed horizon optimal control problems gives a very small reduction in the solution quality of the rst part of the trajectory. The reduced level of detail in the later parts of a plan can increase the eciency of the RHC in two ways. If the discretization is made sparse by removing nodes, fewer computations are necessary, and if the discretization is made sparse by spreading the last nodes over a longer time-horizon, the performance will be improved.

Ort, förlag, år, upplaga, sidor
2010.
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:kth:diva-58006OAI: oai:DiVA.org:kth-58006DiVA, id: diva2:474060
Konferens
AIAA Conference on Guidance, Navigation and Control. Toronto, Canada. 2 - 5 Aug 2010
Anmärkning
QC 20120109Tillgänglig från: 2012-01-09 Skapad: 2012-01-04 Senast uppdaterad: 2018-01-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Ögren, Petter

Sök vidare i DiVA

Av författaren/redaktören
Ögren, PetterRobinson, John W.C.
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 32 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf