Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Joint Observation of Object Pose and Tactile Imprints for Online Grasp Stability Assessment
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.ORCID-id: 0000-0003-2965-2953
2011 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper studies the viability of concurrentobject pose tracking and tactile sensing for assessing graspstability on a physical robotic platform. We present a kernellogistic-regression model of pose- and touch-conditional graspsuccess probability. Models are trained on grasp data whichconsist of (1) the pose of the gripper relative to the object,(2) a tactile description of the contacts between the objectand the fully-closed gripper, and (3) a binary descriptionof grasp feasibility, which indicates whether the grasp canbe used to rigidly control the object. The data is collectedby executing grasps demonstrated by a human on a roboticplatform composed of an industrial arm, a three-finger gripperequipped with tactile sensing arrays, and a vision-based objectpose tracking system. The robot is able to track the poseof an object while it is grasping it, and it can acquiregrasp tactile imprints via pressure sensor arrays mounted onits gripper’s fingers. We consider models defined on severalsubspaces of our input data – using tactile perceptions orgripper poses only. Models are optimized and evaluated with f-fold cross-validation. Our preliminary results show that stabilityassessments based on both tactile and pose data can providebetter rates than assessments based on tactile data alone.

sted, utgiver, år, opplag, sider
2011.
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-63799OAI: oai:DiVA.org:kth-63799DiVA, id: diva2:482672
Konferanse
IEEE ICRA 2011 workshop: Manipulation Under Uncertainty, Shanghai, China, May 13th 2011
Merknad
QC 20120416Tilgjengelig fra: 2012-01-24 Laget: 2012-01-24 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

http://www.csc.kth.se/~detryr/publications/Bekiroglu-2011-MUU.pdf

Personposter BETA

Kragic, Danica

Søk i DiVA

Av forfatter/redaktør
Bekiroglu, YaseminDetry, RenaudKragic, Danica
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 358 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf