Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Unsupervised Fuzzy Clustering Using Weighted Incremental Neural Networks
Centre for Image Analysis, Uppsala University.ORCID-id: 0000-0002-1831-9285
2004 (Engelska)Ingår i: International Journal of Neural Systems, ISSN 0129-0657, E-ISSN 1793-6462, Vol. 14, nr 6, s. 355-371Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A new more efficient variant of a recently developed algorithm for unsupervised fuzzy clustering is introduced. A Weighted Incremental Neural Network (WINN) is introduced and used for this purpose. The new approach is called FC-WINN (Fuzzy Clustering using WINN). The WINN algorithm produces a net of nodes connected by edges, which reflects and preserves the topology of the input data set. Additional weights, which are proportional to the local densities in input space, are associated with the resulting nodes and edges to store useful information about the topological relations in the given input data set. A fuzziness factor, proportional to the connectedness of the net, is introduced in the system. A watershed-like procedure is used to cluster the resulting net. The number of the resulting clusters is determined by this procedure. Only two parameters must be chosen by the user for the FC-WINN algorithm to determine the resolution and the connectedness of the net. Other parameters that must be specified are those which are necessary for the used incremental neural network, which is a modified version of the Growing Neural Gas algorithm (GNG). The FC-WINN algorithm is computationally efficient when compared to other approaches for clustering large high-dimensional data sets.

Ort, förlag, år, upplaga, sidor
2004. Vol. 14, nr 6, s. 355-371
Nyckelord [en]
Unsupervised fuzzy clustering; unsupervised image segmentation; neuro-fuzzy systems; Growing Neural Gas (GNG); incremental neural networks; watersheds; data reduction
Nationell ämneskategori
Medicinteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-67400DOI: 10.1142/S0129065704002121OAI: oai:DiVA.org:kth-67400DiVA, id: diva2:485220
Anmärkning

QC 20120127

Tillgänglig från: 2012-01-28 Skapad: 2012-01-27 Senast uppdaterad: 2017-12-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Hamid Muhammed, Hamed

Sök vidare i DiVA

Av författaren/redaktören
Hamid Muhammed, Hamed
I samma tidskrift
International Journal of Neural Systems
Medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 25 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf