Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effective Design of Trust Ontologies for Improvement in the Structure of Socio-Semantic Trust Networks
KTH, Skolan för informations- och kommunikationsteknik (ICT), Kommunikation: Infrastruktur och tjänster, Programvaru- och datorsystem, SCS.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Kommunikation: Infrastruktur och tjänster, Programvaru- och datorsystem, SCS.ORCID-id: 0000-0002-4722-0823
2008 (engelsk)Inngår i: International Journal On Advances in Intelligent Systems, ISSN 1942-2679, Vol. 1, nr 1, s. 23-42Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
2008. Vol. 1, nr 1, s. 23-42
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-81009OAI: oai:DiVA.org:kth-81009DiVA, id: diva2:496961
Merknad
QC 20120510Tilgjengelig fra: 2012-02-10 Laget: 2012-02-10 Sist oppdatert: 2018-01-12bibliografisk kontrollert
Inngår i avhandling
1. Trust-Based User Profiling
Åpne denne publikasjonen i ny fane eller vindu >>Trust-Based User Profiling
2013 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

We have introduced the notion of user profiling with trust, as a solution to theproblem of uncertainty and unmanageable exposure of personal data duringaccess, retrieval and consumption by web applications. Our solution sug-gests explicit modeling of trust and embedding trust metrics and mechanismswithin very fabric of user profiles. This has in turn allowed information sys-tems to consume and understand this extra knowledge in order to improveinteraction and collaboration among individuals and system. When formaliz-ing such profiles, another challenge is to realize increasingly important notionof privacy preferences of users. Thus, the profiles are designed in a way toincorporate preferences of users allowing target systems to understand pri-vacy concerns of users during their interaction. A majority of contributionsof this work had impact on profiling and recommendation in digital librariescontext, and was implemented in the framework of EU FP7 Smartmuseumproject. Highlighted results start from modeling of adaptive user profilesincorporating users taste, trust and privacy preferences. This in turn led toproposal of several ontologies for user and content characteristics modeling forimproving indexing and retrieval of user content and profiles across the plat-form. Sparsity and uncertainty of profiles were studied through frameworksof data mining and machine learning of profile data taken from on-line so-cial networks. Results of mining and population of data from social networksalong with profile data increased the accuracy of intelligent suggestions madeby system to improving navigation of users in on-line and off-line museum in-terfaces. We also introduced several trust-based recommendation techniquesand frameworks capable of mining implicit and explicit trust across ratingsnetworks taken from social and opinion web. Resulting recommendation al-gorithms have shown to increase accuracy of profiles, through incorporationof knowledge of items and users and diffusing them along the trust networks.At the same time focusing on automated distributed management of profiles,we showed that coverage of system can be increased effectively, surpassingcomparable state of art techniques. We have clearly shown that trust clearlyelevates accuracy of suggestions predicted by system. To assure overall pri-vacy of such value-laden systems, privacy was given a direct focus when archi-tectures and metrics were proposed and shown that a joint optimal setting foraccuracy and perturbation techniques can maintain accurate output. Finally,focusing on hybrid models of web data and recommendations motivated usto study impact of trust in the context of topic-driven recommendation insocial and opinion media, which in turn helped us to show that leveragingcontent-driven and tie-strength networks can improve systems accuracy forseveral important web computing tasks.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2013. s. xi, 48
Serie
TRITA-ICT-ECS AVH, ISSN 1653-6363 ; 13:10
Emneord
trust, userprofiling, userprofiles, privacy, interest, socialnetwork, recommendersystems
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-118488 (URN)978-91-7501-651-1 (ISBN)
Disputas
2013-03-08, C1 Sal, Electrum, ICT/KTH, Isafjordsgatan 20, Kista, 13:00 (engelsk)
Opponent
Veileder
Merknad

QC 20130219

Tilgjengelig fra: 2013-02-19 Laget: 2013-02-19 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Matskin, Mihhail

Søk i DiVA

Av forfatter/redaktør
Dokoohaki, NimaMatskin, Mihhail
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 606 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf