Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Modelling the breakup of solid aggregates in turbulent flows
ETH, Inst Chem & Bioengn, Dept Chem & Appl Biosci.ORCID-id: 0000-0001-7995-3151
2008 (Engelska)Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 612, s. 261-289Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The breakup of solid aggregates suspended in a turbulent flow is considered. The aggregates are assumed to be small with respect to the Kolmogorov length scale and the flow is assumed to be homogeneous. Further, it is assumed that breakup is caused by hydrodynamic stresses acting on the aggregates, and breakup is therefore assumed to follow a first-order kinetic where K-B(x) is the breakup rate function and x is the aggregate mass. To model K-B(x), it is assumed that an aggregate breaks instantaneously when the surrounding flow is violent enough to create a hydrodynamic stress that exceeds a critical value required to break the aggregate. For aggregates smaller than the Kolmogorov length scale the hydrodynamic stress is determined by the viscosity and local energy dissipation rate whose fluctuations are highly intermittent. Hence, the first-order breakup kinetics are governed by the frequency with which the local energy dissipation rate exceeds a critical value (that corresponds to the critical stress). A multifractal model is adopted to describe the statistical properties of the local energy dissipation rate, and a power-law relation is used to relate the critical energy dissipation rate above which breakup occurs to the aggregate mass. The model leads to an expression for K-B(x) that is zero below a limiting aggregate mass, and diverges for x -> infinity. When simulating the breakup process, the former leads to an asymptotic mean aggregate size whose scaling with the mean energy dissipation rate differs by one third from the scaling expected in a non-fluctuating flow.

Ort, förlag, år, upplaga, sidor
2008. Vol. 612, s. 261-289
Nationell ämneskategori
Kemiska processer
Identifikatorer
URN: urn:nbn:se:kth:diva-87896DOI: 10.1017/S002211200800298XISI: 000260050300010OAI: oai:DiVA.org:kth-87896DiVA, id: diva2:502013
Anmärkning
QC 20120214Tillgänglig från: 2012-02-14 Skapad: 2012-02-14 Senast uppdaterad: 2017-12-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Bäbler, Matthäus

Sök vidare i DiVA

Av författaren/redaktören
Bäbler, Matthäus
I samma tidskrift
Journal of Fluid Mechanics
Kemiska processer

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 183 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf