Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Time-resolved photocurrents in quantum well/dot infrared photodetectors with different optical coupling structures
KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi.
KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Fotonik och optik, Fotonik.
Visa övriga samt affilieringar
2012 (Engelska)Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 100, nr 4, s. 043502-Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Temporal developments of photocurrents excited by an infrared radiation pulse in quantum well/dot infrared photodetectors with different optical coupling structures have been theoretically studied. It is shown that the light diffraction in a conventional reflective grating structure is a near-field effect containing severe crosstalk from neighboring pixels. A concave reflector not only eliminates the crosstalk but also strongly diffracts and focuses the incident electric field into deep active layers, which significantly increases the photocurrents in the photodetectors.

Ort, förlag, år, upplaga, sidor
2012. Vol. 100, nr 4, s. 043502-
Nationell ämneskategori
Fysik
Identifikatorer
URN: urn:nbn:se:kth:diva-91623DOI: 10.1063/1.3678637ISI: 000300064500067Scopus ID: 2-s2.0-84863018238OAI: oai:DiVA.org:kth-91623DiVA, id: diva2:511862
Anmärkning
QC 20120323Tillgänglig från: 2012-03-23 Skapad: 2012-03-19 Senast uppdaterad: 2017-12-07Bibliografiskt granskad
Ingår i avhandling
1. Exciton-plasmon interactions in metal-semiconductor nanostructures
Öppna denna publikation i ny flik eller fönster >>Exciton-plasmon interactions in metal-semiconductor nanostructures
2012 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Semiconductor quantum dots and metal nanoparticles feature very strong light-matter interactions, which has led to their use in many photonic applications such as photodetectors, biosensors, components for telecommunications etc.Under illumination both structures exhibit collective electron-photon resonances, described in the frameworks of quasiparticles as exciton-polaritons for semiconductors and surface plasmon-polaritons for metals.To date these two approaches to controlling light interactions have usually been treated separately, with just a few simple attempts to consider exciton-plasmon interactions in a system consisting of both semiconductor and metal nanostructures.In this work, the exciton-polaritons and surface \\plasmon-polaritons are first considered separately, and then combined using the Finite Difference Time Domain numerical method coupled with a master equation for the exciton-polariton population dynamics.To better understand the properties of excitons and plasmons, each quasiparticle is used to investigate two open questions - the source of the Stokes shift between the absorption and luminescence peaks in quantum dots, and the source of the photocurrent increase in quantum dot infrared photodetectors coated by a thin metal film with holes. The combined numerical method is then used to study a system consisting of multiple metal nanoparticles close to a quantum dot, a system which has been predicted to exhibit quantum dot-induced transparency, but is demonstrated to just have a weak dip in the absorption.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2012. s. viii, 50
Serie
Trita-BIO-Report, ISSN 1654-2312 ; 2012:4
Nyckelord
plasmons, excitons, quantum dots, nanoparticles, FDTD, surface plasmon polaritons, QDIP, quantum dot infrared photodetector, polaritons
Nationell ämneskategori
Nanoteknik Teoretisk kemi
Identifikatorer
urn:nbn:se:kth:diva-93306 (URN)978-91-7501-301-5 (ISBN)
Disputation
2012-04-26, B2, Brinellvägen 23, KTH, Stockholm, 14:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Swedish e‐Science Research Center
Anmärkning

QC 20120417

Tillgänglig från: 2012-04-17 Skapad: 2012-04-13 Senast uppdaterad: 2013-04-09Bibliografiskt granskad
2. Light manipulation in micro and nano photonic materials and structures
Öppna denna publikation i ny flik eller fönster >>Light manipulation in micro and nano photonic materials and structures
2012 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Light manipulation is an important method to enhance the light-matter interactions in micro and nano photonic materials and structures by generating usefulelectric field components and increasing time and pathways of light propagationthrough the micro and nano materials and structures. For example, quantum wellinfrared photodetector (QWIP) cannot absorb normal incident radiation so thatthe generation of an electric field component which is parallel to the original incident direction is a necessity for the function of QWIP. Furthermore, the increaseof time and pathways of light propagation in the light-absorbing quantum wellregion will increase the chance of absorbing the photons.The thesis presents the theoretical studies of light manipulation and light-matter interaction in micro and nano photonic materials and structures, aiming atimproving the performance of optical communication devices, photonic integrateddevices and photovoltaic devices.To design efficient micro and nano photonic devices, it is essential to knowthe time evolution of the electromagnetic (EM) field. Two-dimensional and three-dimensional finite-difference time-domain (FDTD) methods have been adopted inthe thesis to numerically solve the Maxwell equations in micro and nano photonicmaterials and structures.Light manipulation in micro and nano material and structures studied in thisthesis includes: (1) light transport in the photonic crystal (PhC) waveguide, (2)light diffraction by the micro-scale dielectric PhC and metallic PhC structures(gratings); and (3) exciton-polaritons of semiconductor quantum dots, (4) surfaceplasmon polaritons at semiconductor-metallic material interface for subwavelengthlight control. All these aspects are found to be useful in optical devices of multiplebeam splitter, quantum well/dot infrared photodetectors, and solar cells.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2012. s. 72
Serie
Trita-BIO-Report, ISSN 1654-2312 ; 2012:13
Nyckelord
Photonic crystal, quantum dot, light-matter interaction
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:kth:diva-94081 (URN)978-91-7501-353-4 (ISBN)
Disputation
2012-06-01, FD51, AlbaNova Universitetscentrum, Roslagstullsbacken 21, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning
QC 20120507Tillgänglig från: 2012-05-07 Skapad: 2012-05-07 Senast uppdaterad: 2012-05-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Fu, Ying

Sök vidare i DiVA

Av författaren/redaktören
Chen, ZhihuiHellström, StaffanQiu, MinFu, Ying
Av organisationen
Teoretisk kemi och biologiFotonik
I samma tidskrift
Applied Physics Letters
Fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 251 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf