kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Dynamic Bulk Provisioning Framework for Concurrent Optimization in PCE-Based WDM Networks
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).ORCID iD: 0000-0003-0525-4491
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).ORCID iD: 0000-0002-5636-9910
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).ORCID iD: 0000-0001-6704-6554
2012 (English)In: Journal of Lightwave Technology, ISSN 0733-8724, E-ISSN 1558-2213, Vol. 30, no 14, p. 2229-2239Article in journal (Refereed) Published
Abstract [en]

A centralized network control and management plane, such as the one based on a path computation element (PCE), is highly beneficial in terms of resource optimization in wavelength division multiplexing optical networks. Benefits of centralized provisioning are even more evident when connection requests are provisioned in batches, i.e., they allow a better use of network resources via concurrent optimization. In this study, a dynamic bulk provisioning framework is presented with the objective of optimizing the use of network resources that also presents, as an additional benefit, the ability to yield a reduction of the control plane overhead. The rationale behind the proposed framework is based on a mechanism in which the PCE client is allowed to bundle and simultaneously send multiple labeled switch path (LSP) requests to the PCE where, in turn, several bundles can be concurrently processed together as a single bulk. From the network deployment perspective, a PCE-based network architecture is proposed to practically realize this approach. For dynamic bulk provisioning of optical LSP requests, a time-efficient integer linear programming (ILP) model (LSP BP ILP) is presented to minimize the request blocking, the network resource consumption, and the network congestion. In addition, a heuristic based on a greedy randomized adaptive search procedure (GRASP), namely LSP_BP_GRASP, is also proposed as a scalable alternative. The presented results demonstrate significant advantages of the proposed PCE bulk provisioning framework based on concurrent optimization in terms of reduced blocking probability and control overhead when compared with conventional dynamic connection provisioning approaches processing a single connection request at a time.

Place, publisher, year, edition, pages
IEEE , 2012. Vol. 30, no 14, p. 2229-2239
Keywords [en]
Bulk provisioning, concurrent optimization, dynamic provisioning, generalized multiprotocol label switching (GMPLS), greedy randomized adaptive search procedure (GRASP), integer linear programming (ILP), path computational element (PCE), wavelength division multiplexing (WDM)
National Category
Telecommunications Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-96712DOI: 10.1109/JLT.2012.2195296ISI: 000304088500001Scopus ID: 2-s2.0-85008529595OAI: oai:DiVA.org:kth-96712DiVA, id: diva2:532352
Funder
ICT - The Next Generation
Note

QC 20120611

Available from: 2012-06-11 Created: 2012-06-11 Last updated: 2024-03-15Bibliographically approved
In thesis
1. Dynamic Resource Provisioning and Survivability Strategies in Optical Networks
Open this publication in new window or tab >>Dynamic Resource Provisioning and Survivability Strategies in Optical Networks
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Optical networks based on Wavelength Division Multiplexing (WDM) technology show many clear benefits in terms of high capacity, flexibility and low power consumption. All these benefits make WDM networks the preferred choice for today’s and future transports solutions which are strongly driven by a plethora of emerging online services.

In such a scenario, capability to provide high capacity during the service provisioning phase is of course very important, but it is not the only requirement that plays a central role. Traffic dynamicity is another essential aspect to consider because in many scenarios, e.g., in the case of real time multimedia services, the connections are expected to be provisioned and torn down quickly and relatively frequently. High traffic dynamicity may put a strain on the network control and management operations (i.e., the overhead due to control message exchange can grow rapidly) that coordinate any provisioning mechanisms. Furthermore, survivability, in the presence of new failure scenarios that goes beyond the single failure assumption, is still of the utmost importance to minimize the network disruptions and data losses. In other words, protection against any possible future failure scenario where multiple faults may struck simultaneously, asks for highly reliable provisioning solutions.

The above consideration have a general validity i.e., can be equally applied to any network segment and not just limited to the core part. So, we also address the problem of service provisioning in the access paradigm. Long reach Passive Optical Networks (PONs) are gaining popularity due to their cost, reach, and bandwidth advantages in the access region. In PON, the design of an efficient bandwidth sharing mechanism between multiple subscribers in the upstream direction is crucial. In addition, Long Reach PONs (LR-PONs) introduces additional challenges in terms of packet delay and network throughput, due to their extended reach. It becomes apparent that effective solutions to the connection provisioning problem in both the core and access optical networks with respect to the considerations made above can ensure a truly optimal end-to-end connectivity while making an efficient usage of resources.

The first part of this thesis focuses on a control and management framework specifically designed for concurrent resource optimization in WDM-based optical networks in a highly dynamic traffic scenario. The framework and the proposed provisioning strategies are specifically designed with the objective of: (i) allowing for a reduction of the blocking probability and the control overhead in a Path Computation Element (PCE)-based network architecture, (ii)  optimizing resource utilization for a traffic scenario that require services with diverse survivability requirements which are achieved by means of  dedicated and shared path-protection, and (iii) designing provisioning mechanism that guarantees high connection availability levels in Double Link Failures (DLF) scenarios. The presented results show that the proposed dynamic provisioning approach can significantly improve the network blocking performance while making an efficient use of primary/backup resources whenever protection is required by the provisioned services. Furthermore, the proposed DLF schemes show good performance in terms of minimizing disruption periods, and allowing for enhanced network robustness when specific services require high connection availability levels.

In the second part of this thesis, we propose efficient resource provisioning strategies for LR-PON. The objective is to optimize the bandwidth allocation in LR-PONs, in particular to: (i) identify the performance limitations associated with traditional (short reach) TDM-PON based Dynamic Bandwidth Allocation (DBA) algorithms when employed in long reach scenarios, and (ii) devise efficient DBA algorithms that can mitigate the performance limitations imposed by an extended reach. Our proposed schemes show noticeable performance gains when compared with conventional DBA algorithms for short-reach PON as well as specifically devised approaches for long reach.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. p. xii, 90
Series
Trita-ICT-COS, ISSN 1653-6347 ; 1302
Keywords
optical networks, passive optical networks, wavelength, routing, Survivability, protection, restoration
National Category
Communication Systems
Research subject
SRA - ICT
Identifiers
urn:nbn:se:kth:diva-122279 (URN)978-91-7501-726-6 (ISBN)
Public defence
2013-06-11, Sal D, Forum, Isafjordsgatan 39, Kista, 10:00 (English)
Opponent
Supervisors
Note

QC 20130520

Available from: 2013-05-20 Created: 2013-05-16 Last updated: 2022-06-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ahmed, JawwadCavdar, CicekMonti, PaoloWosinska, Lena

Search in DiVA

By author/editor
Ahmed, JawwadCavdar, CicekMonti, PaoloWosinska, Lena
By organisation
Optical Network Laboratory (ON Lab)
In the same journal
Journal of Lightwave Technology
TelecommunicationsElectrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 719 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf