Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Packing theory-based framework for evaluating resilient modulus of unbound granular materials
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Transportvetenskap, Väg- och banteknik.
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Transportvetenskap, Väg- och banteknik.ORCID-id: 0000-0003-0889-6078
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Transportvetenskap, Väg- och banteknik.ORCID-id: 0000-0002-0596-228X
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Transportvetenskap, Väg- och banteknik.
2014 (Engelska)Ingår i: The international journal of pavement engineering, ISSN 1029-8436, E-ISSN 1477-268X, Vol. 15, nr 8, s. 689-697Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Enhancing the quality of granular layers is fundamental to optimise the structural performance of the pavements. The objective of this study is to investigate whether previously developed packing theory-based aggregate parameters can evaluate the resilient modulus of unbound granular materials. In this study, 19 differently graded unbound granular materials from two countries (USA and Sweden) were evaluated. This study validated both porosity of primary structure (PS) and contact points per particle (coordination number) as key parameters for evaluating the resilient modulus of unbound granular materials. This study showed that decreasing the PS porosity - higher coordination number - calculated based on the proposed gradation model, yields higher resilient modulus. Good correlation was observed between the proposed packing parameters and resilient modulus of several types of aggregates. The packing theory-based framework successfully recognised granular materials that exhibited poor performance in terms of resilient modulus.

Ort, förlag, år, upplaga, sidor
Taylor & Francis, 2014. Vol. 15, nr 8, s. 689-697
Nyckelord [en]
unbound materials, packing theory, primary structure, porosity, coordination number, and resilient modulus
Nationell ämneskategori
Samhällsbyggnadsteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-97751DOI: 10.1080/10298436.2013.857772ISI: 000334073500002Scopus ID: 2-s2.0-84897914058OAI: oai:DiVA.org:kth-97751DiVA, id: diva2:533657
Anmärkning

QC 20140520

Tillgänglig från: 2012-06-14 Skapad: 2012-06-14 Senast uppdaterad: 2017-12-07Bibliografiskt granskad
Ingår i avhandling
1. Performance model for unbound grnular materials pavements
Öppna denna publikation i ny flik eller fönster >>Performance model for unbound grnular materials pavements
2012 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Recently, there has been growing interest on the behaviour of unbound granular material in road base layers. Researchers have studied that the design of a new pavement and prediction of service life need proper characterization of unbound granular materials, which is one of the requirements for a new mechanistic design method in flexible pavement.

Adequate knowledge of the strength and deformation characteristics of unbound layer in pavements is a prerequisite for proper thickness design, residual life determination, and overall economic optimization of the pavement structure. The current knowledge concerning the granular materials employed in pavement structures is limited. In addition, to date, no general framework has been established to explain satisfactorily the behaviour of unbound granular materials under the complex repeated loading which they experience.

In this study, a conceptual method, packing theory-based model is introduced; this framework evaluates the stability and performance of granular materials based on their packing arrangement. In the framework two basic aggregate structures named as Primary Structure (PS), and Secondary Structure (SS). The Primary Structure (PS) is a range of interactive grain sizes that forms the network of unbound granular materials. The Secondary Structure (SS) includes granular materials smaller than the primary structure. The Secondary Structures fill the gaps between the particles in the Primary Structure and larger particles essentially float in the skeleton.

In this particular packing theory-based model; the Primary Structure porosity, the average contact points (coordination number) of Primary Structure, and a new parameter named Disruption Potential are the key parameters that determine whether or not a particular gradation results in a suitable aggregate structure.

Parameters mentioned above play major role in the aggregate skeleton to perform well in terms of resistance to permanent deformation as well as load carrying capacity (resilient modulus). The skeleton of the materials must be composed of both coarse enough and a limited amount of fine granular materials to effectively resist deformation and carry traffic loads.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2012. s. xiii, 18
Serie
Trita-TSC-LIC ; 12-004
Nyckelord
unbound granular materials, aggregate, packing theory, gradation, primary structure, secundary structure, permanent deformation, resilient modulus
Nationell ämneskategori
Samhällsbyggnadsteknik
Identifikatorer
urn:nbn:se:kth:diva-97752 (URN)978-91-85539-89-5 (ISBN)
Presentation
2012-06-01, B26, KTH, Brinellvägen 23, Stockholm, 09:00 (Engelska)
Opponent
Handledare
Anmärkning
QC 20120601Tillgänglig från: 2012-06-14 Skapad: 2012-06-14Bibliografiskt granskad
2. Packing theory-based Framework for Performance Evaluation of Unbound Granular Materials
Öppna denna publikation i ny flik eller fönster >>Packing theory-based Framework for Performance Evaluation of Unbound Granular Materials
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Enhancing the load bearing quality of granular layers is fundamental to optimize the structural performance of the pavements. Unbound granular materials are one of the most used materials in the base layers of pavements. There have been growing interests on the behavior of unbound granular material in road base layers. Both design of a new pavement and prediction of service life need proper characterization of unbound granular materials, which is one of the requirements for a new mechanistic pavement design methods.

Adequate knowledge of the strength and deformation characteristics of unbound layers in pavements is essential for proper thickness design, residual life determination, and economic optimization of the pavement structure. The current knowledge concerning granular materials employed in pavement structures is limited. In addition, to date, no general framework has been established to explain and evaluate satisfactorily the behavior of unbound granular materials under the complex repeated loading which they experience.

This thesis presents a packing theory-based framework to evaluate the mechanical properties of unbound granular materials. The framework was developed based on the particle-to-particle contact, the particle size distribution and the packing arrangement. The skeleton of the unbound materials should be composed of both coarse enough particles and a limited amount of fine granular materials to effectively resist deformation and carry traffic loads. Based on this, the framework identifies the two basic components of unbound granular materials, namely the primary structure (PS) - a range of interactive coarse grain sizes that forms the main load carrying network in granular materials and the secondary structure (SS) - a range of grain sizes smaller than the PS providing stability to the aggregate skeleton.

In the framework, disruption potential (DP), PS porosity, PS coordination number and void ratio of skeleton (PS+SS) are among the key packing parameters which were established from the framework. These parameters were validated by evaluating the permanent deformation, resilient modulus and California bearing ratio of unbound granular materials using different materials with various experimental results.

Furthermore, in this thesis a new moisture distribution model (Birgisson-Jelagin-Yideti (BJY) moisture distribution model) was introduced. In the model, SS particles associated with water retention. The water is stored as meniscus water between these small particles and fully filled in small voids. The volume of meniscus water between SS particles and the measured matric suction values are the two key parameters considered in the model. The results showed that the model developed is capable of predicting the experimentally measured matric suction values for a range of gradations.

Finally, the application of shakedown and packing theories to characterize permanent deformation behaviour of unbound aggregate materials is presented. A simple finite element analysis has also been simulated in order to find out the effect of disruption potential on the shakedown limit load. Experimental results were used for the simulation of the finite element and compared favourably with the predicted mean stress and dimensionless shakedown load using DP values.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2014. s. viii, 60
Serie
TRITA-TSC-PHD ; 14:001
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
urn:nbn:se:kth:diva-143487 (URN)978-91-87353-36-9 (ISBN)
Disputation
2014-04-11, Kollegiesalen (the old chapel), Brinellvägen 8, KTH, Stockholm, 09:30 (Engelska)
Opponent
Handledare
Anmärkning

QC 20140324

Tillgänglig från: 2014-03-24 Skapad: 2014-03-21 Senast uppdaterad: 2014-03-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Birgisson, BjörnJelagin, Denis

Sök vidare i DiVA

Av författaren/redaktören
Yideti, Tatek FekaduBirgisson, BjörnJelagin, DenisGuarin, Alvaro
Av organisationen
Väg- och banteknik
I samma tidskrift
The international journal of pavement engineering
Samhällsbyggnadsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 896 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf