Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High capacity indoor and hotspot wireless systems in shared spectrum: A techno-economic analysis
KTH, Skolan för informations- och kommunikationsteknik (ICT), Kommunikationssystem, CoS. KTH, Skolan för informations- och kommunikationsteknik (ICT), Centra, KTH Center för Trådlösa System, Wireless@kth.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Kommunikationssystem, CoS. KTH, Skolan för informations- och kommunikationsteknik (ICT), Centra, KTH Center för Trådlösa System, Wireless@kth.ORCID-id: 0000-0001-7642-3067
KTH, Skolan för informations- och kommunikationsteknik (ICT), Kommunikationssystem, CoS. KTH, Skolan för informations- och kommunikationsteknik (ICT), Centra, KTH Center för Trådlösa System, Wireless@kth.ORCID-id: 0000-0003-4986-6123
2013 (engelsk)Inngår i: IEEE Communications Magazine, ISSN 0163-6804, E-ISSN 1558-1896, Vol. 51, nr 12, s. 102-109Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Predictions for wireless and mobile Internet access suggest an exponential traffic increase, particularly in in-building environments. Non-traditional actors such as facility owners have a growing interest in deploying and operating their own indoor networks to fulfill the capacity demand. Such local operators will need spectrum sharing with neighboring networks because they are not likely to have their own dedicated spectrum. Management of internetwork interference then becomes a key issue for high capacity provision. Tight operator-wise cooperation provides superior performance, but at the expense of high infrastructure cost and business-related impairments. Limited coordination, on the other hand, causes harmful interference between operators, which in turn will require even denser networks. In this article, we propose a techno-economic analysis framework for investigating and comparing indoor operator strategies. We refine a traditional network cost model by introducing new inter-operator cost factors. Then we present a numerical example to demonstrate how the proposed framework can help us to compare different operator strategies. Finally, we suggest areas for future research.

sted, utgiver, år, opplag, sider
2013. Vol. 51, nr 12, s. 102-109
Emneord [en]
Operator strategy, Techno-Economic analysis framework, Shared spectrum, Indoor and hotspot deployment
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-104175DOI: 10.1109/MCOM.2013.6685764ISI: 000328984300013Scopus ID: 2-s2.0-84891621985OAI: oai:DiVA.org:kth-104175DiVA, id: diva2:563282
Prosjekter
The Mobile Broadband Project Phase 3: “More for less” (MBB++)
Forskningsfinansiär
Wireless@kth
Merknad

QC 20140130. Updated from submitted to published.

Tilgjengelig fra: 2012-10-29 Laget: 2012-10-29 Sist oppdatert: 2017-12-07bibliografisk kontrollert
Inngår i avhandling
1. Cost Effective Interference Management in Ultra-dense Hotspot Mobile Broadband Systems
Åpne denne publikasjonen i ny fane eller vindu >>Cost Effective Interference Management in Ultra-dense Hotspot Mobile Broadband Systems
2012 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Rapid mobile data traffic growth is becoming in a reality and several forecasts expect that it will be continued in upcoming years. It is expected that significant indoor investment will be made not only by traditional operators but also by facility owners for their own purposes. A key challenge to such local network providers is provisioning ever-increasing mobile traffic demand at the current level of production cost per bit. A popular deployment strategy so far is deploying WLAN networks. While denser indoor deployment is foreseen, the interference from inside of a network as well as other neighboring operators can be a limiting factor for higher capacity. Tighter interference management will certainly provide higher efficiency in network and spectrum usage. Nevertheless, costs to allow fast information sharing among access points are necessary for advanced interference coordination. Moreover, managing interference across networks owned by different operators raises not only infrastructure cost but also the network interrelatedness which operators are typically reluctant for business independency. When taking into account the cost and barriers for interference coordination, it is still not so obvious that coordination in wireless broadband systems will be advantageous to operators.

In this thesis, we address the operator benefit of downlink interference coordination in two aspects: 1) multi-cell coordination with no interference from neighboring operators, and 2) inter-operator coordination in shared spectrum. In order to deal with interference and cost tradeoff analysis, we explicitly develop a techno-economic analysis framework and reform a traditional cost model. Numerical results indicate that the economic benefit of the multi-cell coordination significantly depends on propagation conditions and average user demand level. A self-deployed WLAN network can be the cheapest deployment option in closed areas up to certain average demand level. Over the demand level or in open areas, advanced joint processing schemes in a cellular domain may be a viable solution. The drawback is that it requires extremely accurate channel state information at transmitters for practical usage. When inter-operator interferences is present, asymmetric cellular networks will be likely to appear due to business independency and selfishly compete to access spectrum with no or little network-level coordination. A network designed for more fairness with higher transmission power will have more benefit against the other counterpart. Although asymmetric competition lets operators unfairly utilize spectrum, sharing spectrum with reasonable geographical separation can outperform over static coordination, i.e., traditional spectrum split. Tight cooperation to maximize a common objective can further offer the performance benefit to both involved partners. However, the cooperation gain quickly diminishes as network separation and size increases because self-interference becomes more dominant.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2012. s. viii, 55
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-104100 (URN)
Presentation
2012-11-27, C1, Electrum 229, Isafjordsgatan 26, Kista, 15:00 (engelsk)
Opponent
Veileder
Prosjekter
The Mobile Broadband Project Phase 3: “More for less” (MBB++)
Forskningsfinansiär
ICT - The Next GenerationWireless@kth
Merknad

QC 20121031

Tilgjengelig fra: 2012-10-31 Laget: 2012-10-29 Sist oppdatert: 2013-11-28bibliografisk kontrollert
2. Interference Coordination for Low-cost Indoor Wireless Systems in Shared Spectrum
Åpne denne publikasjonen i ny fane eller vindu >>Interference Coordination for Low-cost Indoor Wireless Systems in Shared Spectrum
2014 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Mobile broadband services have become a big success over the last several years. Innovative, smart handsets have caused explosive traffic growth which has led to a severe capacity shortage. Since the majority of traffic originates from indoor locations or hotspots, significant invest- ment in indoor wireless infrastructure is predicted in order to resolve the capacity problem. While existing public operators mainly focus on high-mobility wide-area services, non-traditional local access providers (LAPs) such as facility owners are more and more interested in high data rate indoor services for their employees or customers. An obstacle is that they do not have access to dedicated spectrum. One proposal is spectrum sharing between LAPs. In shared spectrum, interference management emerges as a key technical challenge, and this becomes more critical as indoor systems become increasingly dense.

This thesis concentrates on the interference management problem when spectrum is shared between high-density indoor wireless systems. There are two different design directions which require different system architectures. A Wi-Fi or femtocell system works in a fully uncoordinated manner without any inter-cell signaling. This allows high network scalability with cheap devices but leads to poor performance. Alter- natively, advanced interference coordination can be used. It certainly improves the performance; however, it usually requires expensive infras- tructure for real-time information exchange. A key question asked in this thesis is if the interference coordination gives sufficient economic gain to a LAP in terms of a total deployment cost. In order to answer this question, we first develop a conceptual framework to define and compare various levels of coordination. Then, we measure the re- quired number of access points (APs) at a given area capacity demand to estimate the economic gain.

The coordination decision problem for a LAP is divided into two. Firstly, the LAP needs to choose the right level of coordination within its own network. Secondly, it determines whether or not to cooperate with neighboring LAPs for coordinating interference across the net- works. Regarding the intra-network decision, the comparison ranges from uncoordinated CSMA/CA to ideal interference cancellation. We find the total deployment cost of the uncoordinated CSMA/CA network soars when an area capacity requirement exceeds a certain threshold. The performance gain of the ideal coordination does not pay off the cost of high-speed backhaul because walls effectively suppress interference. Therefore, the most viable approach in a typical indoor environment is using dynamic coordination schemes via existing backhauls, for example Ethernet or xDSL. As for the cooperation decision, our major finding is that non-cooperative spectrum sharing is feasible provided that the transmit power of the APs is properly regulated. Although cooperation with advanced inter-network coordination schemes brings about cost savings, it is not sufficient to overcome practical barriers to a cooperation agreement especially when the capacity demand is high.

 

 

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2014. s. ix, 55
Serie
TRITA-ICT-COS, ISSN 1653-6347 ; 1401
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-144195 (URN)
Disputas
2014-05-09, Sal/Hall D, KTH-ICT, Isafjordsgatan 39, Kista, 14:00 (engelsk)
Opponent
Veileder
Merknad

QC 20140416

Tilgjengelig fra: 2014-04-16 Laget: 2014-04-14 Sist oppdatert: 2014-04-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Sung, Ki WonZander, Jens

Søk i DiVA

Av forfatter/redaktør
Kang, Du HoSung, Ki WonZander, Jens
Av organisasjonen
I samme tidsskrift
IEEE Communications Magazine

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 399 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf