Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Deformation of cellulose nanocrystals: entropy, internal energy and temperature dependence
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.ORCID-id: 0000-0001-6732-2571
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.ORCID-id: 0000-0001-5818-2378
2012 (Engelska)Ingår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 19, nr 6, s. 1821-1836Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

An in-depth analysis was performed of the molecular deformation mechanisms in cellulose during axial stretching. For the first time, it was demonstrated that entropy affects the stiffness of cellulose nanocrystals significantly. This was achieved through Molecular Dynamics simulations of model nanocrystals subject to constant stress in the axial direction, for nanocrystals of varying lateral dimensions and at different temperatures. The simulations were analyzed in terms of Young's modulus E, which is a measure of the elastic response to applied stress. A weak but significant temperature dependence was shown, with partial derivative E/partial derivative T = -0.05 Gpa K-1 at room temperature, in agreement with experimental numbers. In order to analyze the respective contributions from internal energy and entropy, a decomposition of the total response of the free energy with respect to strain was made. It was shown that the decrease in E with increasing T is due to entropy, and that the magnitude of the decrease is 6-9 % at room temperature compared to the value at 0 K. This was also shown independently by a direct calculation of the vibrational entropy of the cellulose crystal. Finally, it was found that internal hydrogen bonds are contributing to the stiffness by 20 %, mainly by stabilizing the cellulose internal structure.

Ort, förlag, år, upplaga, sidor
2012. Vol. 19, nr 6, s. 1821-1836
Nyckelord [en]
Elastic modulus, Cellulose nanocrystals, Molecular dynamics, Temperature dependence
Nationell ämneskategori
Pappers-, massa- och fiberteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-106112DOI: 10.1007/s10570-012-9774-5ISI: 000310538300003Scopus ID: 2-s2.0-84868340201OAI: oai:DiVA.org:kth-106112DiVA, id: diva2:572905
Anmärkning

QC 20121129

Tillgänglig från: 2012-11-29 Skapad: 2012-11-29 Senast uppdaterad: 2017-12-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Wohlert, JakobBerglund, Lars A.

Sök vidare i DiVA

Av författaren/redaktören
Wohlert, JakobBergenstråhle-Wohlert, MalinBerglund, Lars A.
Av organisationen
Fiber- och polymerteknikWallenberg Wood Science Center
I samma tidskrift
Cellulose (London)
Pappers-, massa- och fiberteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 191 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf