Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multispectral MRI segmentation of age related white matter changes using a cascade of support vector machines
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
Vise andre og tillknytning
2012 (engelsk)Inngår i: Journal of the Neurological Sciences, ISSN 0022-510X, E-ISSN 1878-5883, Vol. 322, nr 1-2, s. 211-216Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

White matter changes (WMC) are the focus of intensive research and have been linked to cognitive impairment and depression in the elderly. Cumbersome manual outlining procedures make research on WMC labor intensive and prone to subjective bias. We present a fast, fully automated method for WMC segmentation using a cascade of reduced support vector machines (SVMs) with active learning. Data of 102 subjects was used in this study. Two MRI sequences (T1-weighted and FLAIR) and masks of manually outlined WMC from each subject were used for the image analysis. The segmentation framework comprises pre-processing, classification (training and core segmentation) and post-processing. After pre-processing, the model was trained on two subjects and tested on the remaining 100 subjects. The effectiveness and robustness of the classification was assessed using the receiver operating curve technique. The cascade of SVMs segmentation framework outputted accurate results with high sensitivity (90%) and specificity (99.5%) values, with the manually outlined WMC as reference. An algorithm for the segmentation of WMC is proposed. This is a completely competitive and fast automatic segmentation framework, capable of using different input sequences, without changes or restrictions of the image analysis algorithm.

sted, utgiver, år, opplag, sider
2012. Vol. 322, nr 1-2, s. 211-216
Emneord [en]
MRI, White matter changes, SVM, Tissue segmentation, Multispectral image processing
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-107611DOI: 10.1016/j.jns.2012.07.064ISI: 000310819500044Scopus ID: 2-s2.0-84867573985OAI: oai:DiVA.org:kth-107611DiVA, id: diva2:577744
Forskningsfinansiär
ICT - The Next Generation
Merknad

QC 20121217

Tilgjengelig fra: 2012-12-17 Laget: 2012-12-14 Sist oppdatert: 2017-12-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Carlsson, Stefan
Av organisasjonen
I samme tidsskrift
Journal of the Neurological Sciences

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 60 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf